186
Views
8
CrossRef citations to date
0
Altmetric
Articles

Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control

, , , , &
Pages 1558-1572 | Received 31 Mar 2014, Accepted 03 May 2014, Published online: 04 Jun 2014

References

  • Ratner BD, Hoffman AS, Schoen FD, Lemons JE. Biomaterials science, an introduction to materials in medicine. 2nd ed. Amsterdam: Elsevier; 2004.
  • Ratner BD. The catastrophe revisited: blood compatibility in the 21st Century. Biomaterials. 2007;28:5144–5147.10.1016/j.biomaterials.2007.07.035
  • Jiang S, Cao ZQ. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010;22:920–932.10.1002/adma.200901407
  • Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir. 2010;26:3522–3530.10.1021/la903172j
  • Chang Y, Chang WJ, Shih YJ, Wei TC, Hsiue GH. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl. Mater. Interfaces. 2011;3:1228–1237.10.1021/am200055k
  • Shih YJ, Chang Y, Deratani A, Quemener D. “Schizophrenic” hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in human blood. Biomacromolecules. 2012;13:2849–2858.10.1021/bm3008764
  • Chang Y, Shih YJ, Lai CJ, Kung HH, Jiang S. Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood. Adv. Funct. Mater. 2013;23:1100–1110.10.1002/adfm.v23.9
  • Zhang Z, Zhang M, Chen SF, Horbett TA, Ratner BD, Jiang S. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials. 2008;29:4285–4291.10.1016/j.biomaterials.2008.07.039
  • Tsai WB, Grunkemeier JM, Horbett TA. Human plasma fibrinogen adsorption and platelet adhesion to polystyrene. J. Biomed. Mater. Res. 1999;44:130–139.10.1002/(ISSN)1097-4636
  • Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir. 2001;17:5605–5620.10.1021/la010384 m
  • Chang Y, Chen S, Yu Q, Zhang Z, Bernards M, Jiang S. Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules. 2007;8:122–127.10.1021/bm060739 m
  • Chang Y, Chen WY, Yandi W, Shih YJ, Chu WL, Liu YL, Chu CW, Ruaan RC, Higuchi A. Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropyl acrylamide). Biomacromolecules. 2009;10:2092–2100.10.1021/bm900208u
  • Chang Y, Yandi W, Chen WY, Shih YJ, Yang CC, Chang YU, Ling Q.-D. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules. 2010;11:1101–1110.10.1021/bm100093g
  • Shih YJ, Chang Y. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir. 2010;26:17286–17294.10.1021/la103186y
  • Sin MC, Sun YM, Chang Y. Zwitterionic-based stainless steel with well-defined polysulfobetaine brushes for general bioadhesive control. ACS Appl. Mater. Interfaces. 2014;6:861–873.10.1021/am4041256
  • Hucknall A, Rangarajan S, Chilkoti A. In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv. Mater. 2009;21:2441–2446.10.1002/adma.v21:23
  • Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011;23:690–718.10.1002/adma.201001215
  • Chen S, Zheng J, Li L, Jiang S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. JACS. 2005;127:14473–14478.10.1021/ja054169u
  • Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polylners and their properties as polymer hydrogel membranes. Polym. J. 1990;22:355–360.10.1295/polymj.22.355
  • Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal.Chem. 2005;381:534–546.10.1007/s00216-004-2805-9
  • Yusa SI, Fukuda K, Yamamoto T, Ishihara K, Morishima Y. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules. 2005;6:663–670.10.1021/bm0495553
  • Yu B, Lowe AB, Ishihara K. RAFT synthesis and stimulus-induced self-assembly in water of copolymers based on the biocompatible monomer 2-(methacryloyloxy)ethyl phosphorylcholine. Biomacromolecules. 2009;10:950–958.10.1021/bm8014945
  • Chang Y, Chen SF, Zhang Z, Jiang S. Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir. 2006;22:2222–2226.10.1021/la052962v
  • Zhang Z, Chen S, Jiang S. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules. 2006;7:3311–3315.10.1021/bm060750m
  • Zhang Z, Chao T, Chen SF, Jiang S. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072–10077.10.1021/la062175d
  • Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules. 2008;9:1357–1361.10.1021/bm701301s
  • Brault ND, Sundaram HS, Li YT, Huang CJ, Yu QM, Jiang S. Dry film refractive index as an important parameter for ultra-low fouling surface coatings. Biomacromolecules. 2012;13:589–593.10.1021/bm3001217
  • He Y, Hower J, Chen S, Bernards MT, Chang Y, Jiang S. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir. 2008;24:10358–10364.10.1021/la8013046
  • Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, Pier G, Warren HS, Whitesides GM. Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir. 2001;17:1225–1233.10.1021/la001222d
  • Bernards MT, Cheng G, Zhang Z, Chen F, Jiang S. Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules. 2008;41:4216–4219.
  • Mi L, Bernards MT, Cheng G, Yu Q, Jiang S. pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers. Biomaterials. 2010;31:2919–2925.10.1016/j.biomaterials.2009.12.038
  • Chen SF, Jiang S. An new avenue to nonfouling materials. Adv. Mater. 2008;20:335–338.10.1002/(ISSN)1521-4095
  • Kwak D, Wu YG, Horbett TA. Fibrinogen and von Willebrand's factor adsorption are both required for platelet adhesion from sheared suspensions to polyethylene preadsorbed with blood plasma. J. Biomed. Mater. Res. Part A. 2005;74A:69–83.10.1002/(ISSN)1552-4965
  • Holmlin RE, Chen XX, Chapman RG, Takayama S, Whitesides GM. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir. 2001;17:2841–2850.10.1021/la0015258
  • Dąbkowska M, Adamczyk Z. Ionic strength effect in HSA adsorption on mica determined by streaming potential measurements. J. Colloid Interface Sci. 2012;366:105–113.10.1016/j.jcis.2011.09.030
  • Ortega-Vinuesa JL, Tengvall P, Lundström I. Aggregation of HSA, IgG, and Fibrinogen on methylated silicon surfaces. J. Colloid Interface Sci. 1998;207:228–239.10.1006/jcis.1998.5624
  • Storey KB. Functional Metabolism. New Jersey, NJ: John Wiley; 2004.10.1002/047167558X
  • Michael J, Sircar S. Fundamentals of medical physiology. New York, NY: Thieme Medical Publishers Inc; 2011.
  • Tokumasu F, Ostera GR, Amaratunga C, Fairhurst RM. Modifications in erythrocyte membrane zeta potential by Plasmodium falciparum infection. Exp. Parasitol. 2012;131:245–251.10.1016/j.exppara.2012.03.005
  • Shen MC, Wagner MS, Castner DG, Ratner BD, Horbett TA. Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion†. Langmuir. 2003;19:1692–1699.10.1021/la0259297
  • Unsworth LD, Sheardown H, Brash JL. Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: effect of surface chain density. Langmuir. 2005;21:1036–1041.10.1021/la047672d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.