1,326
Views
59
CrossRef citations to date
0
Altmetric
Review Papers

Recent advances of zwitterionic carboxybetaine materials and their derivatives

, &
Pages 1502-1513 | Received 10 Apr 2014, Accepted 20 May 2014, Published online: 23 Jun 2014

References

  • Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. ( Weinheim, Ger.) 2010;22:920–932.10.1002/adma.200901407
  • Chen S, Zheng J, Li L, Jiang S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 2005;127:14473–14478.10.1021/ja054169u
  • He Y, Hower J, Chen S, Bernards MT, Chang Y, Jiang S. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir. 2008;24:10358–10364.10.1021/la8013046
  • Shao Q, He Y, White AD, Jiang S. Different effects of zwitterion and ethylene glycol on proteins. J. Chem. Phys. 2012;136:225101/1–225101/6.
  • Shao Q, White AD, Jiang S. Difference of carboxybetaine and oligo(ethylene glycol) moieties in altering hydrophobic interactions: a molecular simulation study. J. Phys. Chem. B 2013;118:189–194.
  • Hower JC, Bernards MT, Chen S, Tsao H-K, Sheng Y-J, Jiang S. Hydration of ‘nonfouling’ functional groups. J. Phys. Chem. B 2008;113:197–201.
  • Li L, Chen S, Zheng J, Ratner BD, Jiang S. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. J. Phys. Chem. B 2005;109:2934–2941.10.1021/jp0473321
  • Zhang Z, Chen S, Jiang S. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules. 2006;7:3311–3315.10.1021/bm060750m
  • Zhang Z, Vaisocherová H, Cheng G, Yang W, Xue H, Jiang S. Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects. Biomacromolecules. 2008;9:2686–2692.10.1021/bm800407r
  • Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009;30:5234–5240.10.1016/j.biomaterials.2009.05.058
  • Zhang Z, Chen S, Chang Y, Jiang S. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J. Phys. Chem. B 2006;110:10799–10804.10.1021/jp057266i
  • Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28:4192–4199.10.1016/j.biomaterials.2007.05.041
  • Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polylners and their properties as polymer hydrogel membranes. Polym. J. 1990;22:355–360.10.1295/polymj.22.355
  • Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998;39:323–330.10.1002/(ISSN)1097-4636
  • Yasuhiko I, Kazuhiko I. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci. Technol. Adv. Mater. 2012;13:064101.
  • Zhang Z, Chao T, Chen S, Jiang S. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072–10077.10.1021/la062175d
  • Keefe AJ, Jiang S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem. 2012;4:59–63.
  • Yang W, Zhang L, Wang S, White AD, Jiang S. Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials. 2009;30:5617–5621.10.1016/j.biomaterials.2009.06.036
  • Brault ND, Gao C, Xue H, Piliarik M, Homola J, Jiang S, Yu Q. Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. Biosens. Bioelectron. 2010;25:2276–2282.10.1016/j.bios.2010.03.012
  • Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules. 2008;9:1357–1361.10.1021/bm701301s
  • Yang W, Xue H, Li W, Zhang J, Jiang S. Pursuing ‘zero’ protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir. 2009;25:11911–11916.10.1021/la9015788
  • Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials. 2008;29:4285–4291.10.1016/j.biomaterials.2008.07.039
  • Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR, Irvin C, Ratner BD, Jiang S. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 2013;31:553–556.10.1038/nbt.2580
  • Li A, Luehmann HP, Sun GR, Samarajeewa S, Zou J, Zhang SY, Zhang FW, Welch MJ, Liu YJ, Wooley KL. Synthesis and in vivo pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly(carboxybetaine) versus poly(ethylene glycol) surface-grafted coatings. ACS Nano 2012;6:8970–8982.10.1021/nn303030t
  • Zhang Z, Chao T, Liu LY, Cheng G, Ratner BD, Jiang SY. Zwitterionic hydrogels: an in vivo implantation study. J. Biomater. Sci., Polym. Ed. 2009;20:1845–1859.10.1163/156856208X386444
  • Vaisocherová H, Yang W, Zhang Z, Cao Z, Cheng G, Piliarik M, Homola J, Jiang S. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal. Chem. 2008;80:7894–7901.10.1021/ac8015888
  • Cao B, Tang Q, Li L, Humble J, Wu H, Liu L, Cheng G. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties. Adv. Healthcare Mater. 2013;2:1096–1102.
  • Cao B, Li L, Tang Q, Cheng G. The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer. Biomaterials. 2013;34:7592–7600.10.1016/j.biomaterials.2013.06.063
  • Shao Q, Jiang S. Effect of carbon spacer length on zwitterionic carboxybetaines. J. Phys. Chem. B 2013;117:1357–1366.10.1021/jp3094534
  • Vaisocherová H, Zhang Z, Yang W, Cao Z, Cheng G, Taylor AD, Piliarik M, Homola J, Jiang S. Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma – material selection and protein immobilization optimization. Biosens. Bioelectron. 2009;24:1924–1930.10.1016/j.bios.2008.09.035
  • Zhang Z, Cheng G, Carr LR, Vaisocherová H, Chen S, Jiang S. The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials. 2008;29:4719–4725.10.1016/j.biomaterials.2008.08.030
  • Abraham S, Unsworth LD. Multi-functional initiator and poly(carboxybetaine methacrylamides) for building biocompatible surfaces using ‘nitroxide mediated free radical polymerization’ strategies. J. Polym. Sci., Part A: Polym. Chem. 2011;49:1051–1060.10.1002/pola.v49.5
  • Zhang Z, Chao T, Jiang S. Physical, chemical, and chemical−physical double network of zwitterionic hydrogels. J. Phys. Chem. B 2008;112:5327–5332.10.1021/jp710683w
  • Carr LR, Xue H, Jiang S. Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials. 2010;32:961–968.
  • Carr L, Cheng G, Xue H, Jiang S. Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels. Langmuir. 2010;26:14793–14798.10.1021/la1028004
  • Kostina NY, Rodriguez-Emmenegger C, Houska M, Brynda E, Michalek J. Non-fouling hydrogels of 2-hydroxyethyl methacrylate and zwitterionic carboxybetaine (meth)acrylamides. Biomacromolecules. 2012;13:4164–4170.
  • Kostina NY, Sharifi S, de los Santos Pereira A, Michálek J, Grijpma DW, Rodriguez-Emmenegger C, Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties. J. Mater. Chem. B. 2013:5644–5650.10.1039/c3tb20704h
  • Ning J, Li G, Haraguchi K. Synthesis of highly stretchable, mechanically tough, zwitterionic sulfobetaine nanocomposite gels with controlled thermosensitivities. Macromolecules. 2013;46:5317–5328.10.1021/ma4009059
  • Carr LR, Krause JE, Ella-Menye J-R, Jiang S. Single nonfouling hydrogels with mechanical and chemical functionality gradients. Biomaterials. 2011;32:8456–8461.10.1016/j.biomaterials.2011.07.062
  • Carr LR, Zhou Y, Krause JE, Xue H, Jiang S. Uniform zwitterionic polymer hydrogels with a nonfouling and functionalizable crosslinker using photopolymerization. Biomaterials. 2011;32:6893–6899.10.1016/j.biomaterials.2011.06.006
  • Carr LR, Xue H, Jiang S. Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials. 2011;32:961–968.10.1016/j.biomaterials.2010.09.067
  • He Y, Tsao H-K, Jiang S. Improved mechanical properties of zwitterionic hydrogels with hydroxyl groups. J. Phys. Chem. B 2012;116:5766–5770.10.1021/jp300205m
  • Loose C, Jensen K, Rigoutsos I, Stephanopoulos G. A linguistic model for the rational design of antimicrobial peptides. Nature. 2006;443:867–869.10.1038/nature05233
  • Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules. 2004;5:877–882.10.1021/bm034352k
  • Haldar J, An D, Álvarez de Cienfuegos L, Chen J, Klibanov AM. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc. Nat. Acad. Sci. 2006;103:17667–17671.10.1073/pnas.0608803103
  • Klibanov AM. Permanently microbicidal materials coatings. J. Mater. Chem. 2007;17:2479–2482.10.1039/b702079a
  • Cheng G, Xue H, Zhang Z, Chen S, Jiang S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew. Chem. Int. Ed. 2008;47:8831–8834.10.1002/anie.v47:46
  • Cheng G, Xue H, Zhang Z, Chen S, Jiang S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew. Chem. 2008;120:8963–8966.10.1002/ange.v120:46
  • Mi L, Jiang S. Synchronizing nonfouling and antimicrobial properties in a zwitterionic hydrogel. Biomaterials. 2012;33:8928–8933.10.1016/j.biomaterials.2012.09.011
  • Sobolčiak P, Špírek M, Katrlík J, Gemeiner P, Lacík I, Kasák P. Light-switchable polymer from cationic to zwitterionic form: synthesis, characterization, and interactions with DNA and bacterial cells. Macromol. Rapid Commun. 2013;34:635–639.10.1002/marc.v34.8
  • Cheng G, Xue H, Li G, Jiang S. Integrated antimicrobial and nonfouling hydrogels to inhibit the growth of planktonic bacterial cells and keep the surface clean. Langmuir. 2010;26:10425–10428.10.1021/la101542m
  • Mi L, Xue H, Li Y, Jiang S. A thermoresponsive antimicrobial wound dressing hydrogel based on a cationic betaine ester. Adv. Funct. Mater. 2011;21:4028–4034.10.1002/adfm.v21.21
  • Ji F, Lin W, Wang Z, Wang L, Zhang J, Ma G, Chen S. Development of nonstick and drug-loaded wound dressing based on the hydrolytic hydrophobic poly(carboxybetaine) ester analogue. ACS Appl. Mater. Interfaces. 2013;5:10489–10494.10.1021/am403657t
  • Hu R, Li G, Jiang Y, Zhang Y, Zou J-J, Wang L, Zhang X. Silver–zwitterion organic–inorganic nanocomposite with antimicrobial and antiadhesive capabilities. Langmuir. 2013;29:3773–3779.10.1021/la304708b
  • Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew. Chem. Int. Ed. 2014;53:1746–1754.10.1002/anie.v53.7
  • Cao Z, Mi L, Mendiola J, Ella-Menye J-R, Zhang L, Xue H, Jiang S. Reversibly switching the function of a surface between attacking and defending against bacteria. Angew. Chem. Int. Ed. 2012;51:2602–2605, S2602/1–S2602/8.10.1002/anie.201106466
  • Cao Z, Brault N, Xue H, Keefe A, Jiang S. Manipulating sticky and non-sticky properties in a single material. Angew. Chem. Int. Ed. 2011;50:6102–6104.10.1002/anie.v50.27
  • Krause JE, Brault ND, Li Y, Xue H, Zhou Y, Jiang S. Photoiniferter-mediated polymerization of zwitterionic carboxybetaine monomers for low-fouling and functionalizable surface coatings. Macromolecules. 2011;44:9213–9220.10.1021/ma202007h
  • Li Y, Keefe AJ, Giarmarco M, Brault ND, Jiang S. Simple and robust approach for passivating and functionalizing surfaces for use in complex media. Langmuir. 2012;28:9707–9713.10.1021/la301691d
  • Mahmud G, Huda S, Yang W, Kandere-Grzybowska K, Pilans D, Jiang S, Grzybowski BA. Carboxybetaine methacrylate polymers offer robust, long-term protection against cell adhesion. Langmuir. 2011;27:10800–10804.
  • Vaisocherová H, Yang W, Zhang Z, Cao Z, Cheng G, Piliarik M, Homola J, Jiang S. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal. Chem. 2008;80:7894–7901.10.1021/ac8015888
  • Kirk JT, Brault ND, Baehr-Jones T, Hochberg M, Jiang S, Ratner DM. Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted humanplasma. Biosens. Bioelectron. 2013;42:100–105.10.1016/j.bios.2012.10.079
  • Von Muhlen MG, Brault ND, Knudsen SM, Jiang S, Manalis SR. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal. Chem. 2010;82:1905–1910.10.1021/ac9027356
  • Zhu Y, Xu X, Brault ND, Keefe AJ, Han X, Deng Y, Xu J, Yu Q, Jiang S. Cellulose paper sensors modified with zwitterionic poly(carboxybetaine) for sensing and detection in complex media. Anal. Chem. 2014;86:2871–2875.
  • Wang H, Yue G, Dong C, Wu F, Wei J, Yang Y, Zou Z, Wang L, Qian X, Zhang T, Liu B. Carboxybetaine methacrylate-modified nylon surface for circulating tumor cell capture. ACS Appl. Mater. Interfaces. 2014;6:4550–4559.
  • Cao B, Li L, Wu H, Tang Q, Sun B, Dong H, Zhe J, Cheng G. Zwitteration of dextran: a facile route to integrate antifouling, switchability and optical transparency into natural polymers. Chem. Commun. 2014;50:3234–3237.10.1039/c3cc48878k
  • Chien H-W, Tsai W-B, Jiang S. Direct cell encapsulation in biodegradable and functionalizable carboxybetaine hydrogels. Biomaterials. 2012;33:5706–5712.10.1016/j.biomaterials.2012.04.031
  • Chien H-W, Xu X, Ella-Menye J-R, Tsai W-B, Jiang S. High viability of cells encapsulated in degradable poly(carboxybetaine) hydrogels. Langmuir. 2012;28:17778–17784.10.1021/la303390j
  • Beltran-Osuna AA, Cao B, Cheng G, Jana SC, Espe MP, Lama B. New antifouling silica hydrogel. Langmuir. 2012;28:9700–9706.
  • Coneski PN, Wynne JH. Zwitterionic polyurethane hydrogels derived from carboxybetaine-functionalized diols. ACS Appl. Mater. Interfaces. 2012;4:4465–4469.10.1021/am301383z
  • Yang W, Xue H, Carr LR, Wang J, Jiang S. Zwitterionic poly(carboxybetaine) hydrogels for glucose biosensors in complex media. Biosens. Bioelectron. 2011;26:2454–2459.10.1016/j.bios.2010.10.031
  • Yang W, Bai T, Carr LR, Keefe AJ, Xu J, Xue H, Irvin CA, Chen S, Wang J, Jiang S. The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials. 2012;33:7945–7951.10.1016/j.biomaterials.2012.07.035
  • Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R, Irvin C, Ratner BD, Jiang S. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 2013;31:553–556.10.1038/nbt.2580
  • Bai T, Liu S, Sun F, Sinclair A, Zhang L, Shao Q, Jiang S. Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. Biomaterials. 2014;35:3926–3933.10.1016/j.biomaterials.2014.01.077
  • Cao Z, Yu Q, Xue H, Cheng G, Jiang S. Nanoparticles for drug delivery prepared from amphiphilic PLGA zwitterionic block copolymers with sharp contrast in polarity between two blocks. Angew. Chem. Int. Ed. 2010;49:3771–3776, S3771/1–S3771/9.10.1002/anie.v49:22
  • Park J, Brust TF, Lee HJ, Lee SC, Watts VJ, Yeo Y. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano. 2014;8:3347–3356.
  • Keefe AJ, Jiang SY. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem. 2012;4:60–64.
  • Cao ZQ, Zhang L, Jiang SY. Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir. 2012;28:11625–11632.10.1021/la302433a
  • Yang W, Liu S, Bai T, Keefe AJ, Zhang L, Ella-Menye J-R, Li Y, Jiang S. Poly(carboxybetaine) nanomaterials enable long circulation and prevent polymer-specific antibody production. Nano Today. 2014;9:10–16.
  • Yang W, Ella-Menye J-R, Liu S, Bai T, Wang D, Yu Q, Li Y, Jiang S. Cross-linked carboxybetaine SAMs enable nanoparticles with remarkable stability in complex media. Langmuir. 2014;30:2522–2529.10.1021/la404941m
  • Wang L, Wang Z, Ma G, Lin W, Chen S. Reducing the cytotoxity of poly(amidoamine) dendrimers by modification of a single layer of carboxybetaine. Langmuir. 2013;29:8914–8921.10.1021/la400623s
  • Abraham S, So A, Unsworth LD. Poly(carboxybetaine methacrylamide)-modified nanoparticles: a model system for studying the effect of chain chemistry on film properties, adsorbed protein conformation, and clot formation kinetics. Biomacromolecules. 2011;12:3567–3580.10.1021/bm200778u
  • Zhang L, Sinclair A, Cao ZQ, Ella-Menye JR, Xu XW, Carr LR, Pun SH, Jiang SY. Hydrolytic cationic ester microparticles for highly efficient DNA vaccine delivery. Small. 2013;9:3439–3444.10.1002/smll.v9.20
  • Carr LR, Jiang SY. Mediating high levels of gene transfer without cytotoxicity via hydrolytic cationic ester polymers. Biomaterials. 2010;31:4186–4193.10.1016/j.biomaterials.2010.01.110
  • Xiu K-M, Zhao N-N, Yang W-T, Xu F-J. Versatile functionalization of gene vectors via different types of zwitterionic betaine species for serum-tolerant transfection. Acta Biomater. 2013;9:7439–7448.10.1016/j.actbio.2013.04.010
  • Cheng G, Mi L, Cao Z, Xue H, Yu Q, Carr L, Jiang S. Functionalizable and ultrastable zwitterionic nanogels. Langmuir. 2010;26:6883–6886.10.1021/la100664g
  • Zhang L, Xue H, Gao C, Carr L, Wang J, Chu B, Jiang S. Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-L-alanine linkages. Biomaterials. 2010;31:6582–6588.10.1016/j.biomaterials.2010.05.018
  • Zhang L, Cao ZQ, Li YT, Ella-Menye JR, Bai T, Jiang SY. Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. ACS Nano. 2012;6:6681–6686.10.1021/nn301159a
  • Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751–760.10.1038/nnano.2007.387

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.