296
Views
20
CrossRef citations to date
0
Altmetric
Articles

Influence of zwitterionic SAMs on protein adsorption and the attachment of algal cells

, , , , &
Pages 1530-1539 | Received 25 Mar 2014, Accepted 27 May 2014, Published online: 23 Jun 2014

References

  • Callow ME, Callow JA. Marine biofouling: a sticky problem. Biologist. 2002;49:1–5.
  • Callow JA, Callow ME. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun. 2011;2. doi: 10.1038/ncomms1251
  • Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011;23:690–718.10.1002/adma.201001215
  • Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Ann. Rev. Biomed. Eng. 2004;6:41–75.10.1146/annurev.bioeng.6.040803.140027
  • Schilp S, Rosenhahn A, Pettitt ME, Bowen J, Callow ME, Callow JA, Grunze M. Physicochemical properties of (ethylene glycol)-containing self-assembled monolayers relevant for protein and algal cell resistance. Langmuir. 2009;25:10077–10082.10.1021/la901038 g
  • Holmlin RE, Chen XX, Chapman RG, Takayama S, Whitesides GM. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir. 2001;17:2841–2850.10.1021/la0015258
  • Ista LK, Fan HY, Baca O, Lopez GP. Attachment of bacteria to model solid surfaces: oligo(ethylene glycol) surfaces inhibit bacterial attachment. FEMS Microbiol. Lett. 1996;142:59–63.10.1111/fml.1996.142.issue-1
  • Pertsin AJ, Grunze M. Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir. 2000;16:8829–8841.10.1021/la000340y
  • Herrwerth S, Eck W, Reinhardt S, Grunze M. Factors that determine the protein resistance of oligoether self-assembled monolayers − Internal hydrophilicity, terminal hydrophilicity, and lateral packing density. J. Am. Chem. Soc. 2003;125:9359–9366.10.1021/ja034820y
  • Rosenhahn A, Schilp S, Kreuzer HJ, Grunze M. The role of “inert” surface chemistry in marine biofouling prevention. Phys. Chem. Chem. Phys. 2010;12:4275–4286.10.1039/c001968m
  • Kane RS, Deschatelets P, Whitesides GM. Kosmotropes form the basis of protein-resistant surfaces. Langmuir. 2003;19:2388–2391.10.1021/la020737x
  • Chen S, Jiang S. An new avenue to nonfouling materials. Adv. Mater. 2008;20:335–338.10.1002/(ISSN)1521-4095
  • Chen SF, Li LY, Zhao C, Zheng J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer. 2010;51:5283–5293.10.1016/j.polymer.2010.08.022
  • Kitano H, Nagaoka K, Tada S, Gemmei-Ide M, Tanaka M. Structure of water incorporated in amphoteric polymer thin films as revealed by FT-IR spectroscopy. Macromol. Biosci. 2008;8:77–85.10.1002/(ISSN)1616-5195
  • Kitano H, Imai M, Sudo K, Ide M. Hydrogen-bonded network structure of water in aqueous solution of sulfobetaine polymers. J. Phys. Chem. B. 2002;106:11391–11396.10.1021/jp020185r
  • Ederth T, Nygren P, Pettitt ME, Ostblom M, Du CX, Broo K, Callow ME, Callow J, Liedberg B. Anomalous settlement behavior of Ulva linza zoospores on cationic oligopeptide surfaces. Biofouling. 2008;24:303–312.10.1080/08927010802192650
  • Ekblad T, Andersson O, Tai FI, Ederth T, Liedberg B. Lateral control of protein adsorption on charged polymer gradients. Langmuir. 2009;25:3755–3762.10.1021/la803443d
  • Ista LK, Callow ME, Finlay JA, Coleman SE, Nolasco AC, Simons RH, Callow JA, Lopez GP. Effect of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores. Appl. Environ. Microbiol. 2004;70:4151–4157.10.1128/AEM.70.7.4151-4157.2004
  • Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir. 2001;17:6336–6343.10.1021/la010552a
  • Zhang Z, Chao T, Chen SF, Jiang SY. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072–10077.10.1021/la062175d
  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005;105:1103–1169.10.1021/cr0300789
  • Prime KL, Whitesides GM. Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science. 1991;252:1164–1167.10.1126/science.252.5009.1164
  • Bain CD, Whitesides GM. Formation of two-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols. J. Am. Chem. Soc. 1988;110:6560–6561.10.1021/ja00227a044
  • Ooi Y, Hobara D, Yamamoto M, Kakiuchi T. Ideal nonideality in adsorption of 2-aminoethanethiol and 2-mercaptoethane sulfonic acid to form electrostatically stabilized binary self-assembled monolayers on Au(111). Langmuir. 2005;21:11185–11189.10.1021/la051160x
  • Shen CH, Lin JC. Solvent and concentration effects on the surface characteristics and platelet compatibility of zwitterionic sulfobetaine-terminated self-assembled monolayers. Colloids Surf. B: Biointerfaces. 2013;101:376–383.10.1016/j.colsurfb.2012.07.035
  • Wang H, Chen SF, Li LY, Jiang SY. Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir. 2005;21:2633–2636.10.1021/la046810w
  • Chen SF, Yu FC, Yu QM, He Y, Jiang SY. Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption. Langmuir. 2006;22:8186–8191.10.1021/la061012 m
  • Callow ME, Callow JA, Pickett-Heaps JD, Wetherbee R. Primary adhesion of Enteromorpha (Chlorophyta, Ulvales) propagules: quantitative settlement studies and video microscopy. J. Phycol. 1997;33:938–947.10.1111/j.0022-3646.1997.00938.x
  • Schilp S, Kueller A, Rosenhahn A, Grunze M, Pettitt ME, Callow ME, Callow JA. Settlement and adhesion of algal cells to hexa(ethylene glycol)-containing self-assembled monolayers with systematically changed wetting properties. Biointerphases. 2007;2:143–150.10.1116/1.2806729
  • Shirley DA. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B. 1972;5:4709–4714.10.1103/PhysRevB.5.4709
  • Prime KL, Whitesides GM. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J. Am. Chem. Soc. 1993;115:10714–10721.10.1021/ja00076a032
  • Cooper SP, Finlay JA, Cone G, Callow ME, Callow JA, Brennan AB. Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers. Biofouling. 2011;27:881–891.10.1080/08927014.2011.611305
  • Mieszkin S, Martin-Tanchereau P, Callow ME, Callow JA. Effect of bacterial biofilms formed on fouling-release coatings from natural seawater and Cobetia marina, on the adhesion of two marine algae. Biofouling. 2012;28:953–968.10.1080/08927014.2012.723696
  • Schultz MP, Finlay JA, Callow ME, Callow JA. A turbulent channel flow apparatus for the determination of the adhesion strength of microfouling organisms. Biofouling. 2000;15:243–251.10.1080/08927010009386315
  • Christophis C, Grunze M, Rosenhahn A. Quantification of the adhesion strength of fibroblast cells on ethylene glycol terminated self-assembled monolayers by a microfluidic shear force assay. Phys. Chem. Chem. Phys. 2010;12:4498–4504.10.1039/b924304f
  • Arpa-Sancet M, Christophis C, Rosenhahn A. Microfluidic assay to quantify the adhesion of marine bacteria. Biointerphases. 2012;7:1–9.10.1007/s13758-012-0026-x
  • Guillard RR, Ryther JH. Studies of marine planktonic diatoms. 1. Cyclotella nana hustedt, and Detonula confervacea (Cleve) Gran. Canad. J. Microbiol. 1962;8:229–239.10.1139/m62-029
  • Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM. Surveying for surfaces that resist the adsorption of proteins. J. Am. Chem. Soc. 2000;122:8303–8304.10.1021/ja000774f
  • Callow ME, Callow JA, Ista LK, Coleman SE, Nolasco AC, Lopez GP. Use of self-assembled monolayers of different wettabilities to study surface selection and primary adhesion processes of green algal (Enteromorpha) zoospores. Appl. Environ. Microbiol. 2000;66:3249–3254.10.1128/AEM.66.8.3249-3254.2000
  • Thome I, Pettitt ME, Callow ME, Callow JA, Grunze M, Rosenhahn A. Conditioning of surfaces by macromolecules and its implication for the settlement of zoospores of the green alga Ulva linza. Biofouling. 2012;28:501–510.10.1080/08927014.2012.689288
  • Ederth T, Pettitt ME, Nygren P, Du CX, Ekblad T, Zhou Y, Falk M, Callow ME, Callow JA, Liedberg B. Interactions of zoospores of Ulva linza with Arginine-Rich oligopeptide monolayers. Langmuir. 2009;25:9375–9383.10.1021/la900688 g
  • Rosenhahn A, Finlay JA, Pettitt ME, Ward A, Wirges W, Gerhard R, Callow ME, Grunze M, Callow JA. Zeta potential of motile spores of the green alga Ulva linza and the influence of electrostatic interactions on spore settlement and adhesion strength. Biointerphases. 2009;4:7–11.10.1116/1.3110182

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.