570
Views
12
CrossRef citations to date
0
Altmetric
Review Papers

Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives

&
Pages 1461-1478 | Received 31 Mar 2014, Accepted 10 Jun 2014, Published online: 10 Jul 2014

References

  • Miller AD. Human gene therapy comes of age. Nature. 1992;357:455–460.10.1038/357455a0
  • Mulligan RC. The basic science of gene therapy. Science. 1993;260:926–932.10.1126/science.8493530
  • Verma IM, Somia N. Gene therapy-promises, problems and prospects. Nature. 1997;389:239–242.10.1038/38410
  • Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 2001;7:33–40.10.1038/83324
  • Merdan T, Kopec̆ek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliver. Rev. 2002;54:715–758.10.1016/S0169-409X(02)00046-7
  • Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 2002;9:1647–1652.10.1038/sj.gt.3301923
  • Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003;4:346–358.10.1038/nrg1066
  • Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, Moroni L, Dubruel P. Cationic polymers and their therapeutic potential. Chem. Soc. Rev. 2012;41:7147–7194.10.1039/c2cs35094g
  • Dubruel P, Schacht E. Vinyl polymers as non-viral gene delivery carriers: current status and prospects. Macromol. Biosci. 2006;6:789–810.10.1002/(ISSN)1616-5195
  • Marshall DJ, Palasis M, Lepore JJ, Leiden JM. Biocompatibility of cardiovascular gene delivery catheters with adenovirus vectors: an important determinant of the efficiency of cardiovascular gene transfer. Mol. Ther. 2000;1:423–429.10.1006/mthe.2000.0059
  • Shuai XT, Merdan T, Unger F, Kissel T. Supramolecular gene delivery vectors showing enhanced transgene expression and good biocompatibility. Bioconjugate Chem. 2005;16:322–329.10.1021/bc0498471
  • Peng L, Gao Y, Xue Y-N, Huang S-W, Zhuo R-X. Cytotoxicity and in vivo tissue compatibility of poly(amidoamine) with pendant aminobutyl group as a gene delivery vector. Biomaterials. 2010;31:4467–4476.10.1016/j.biomaterials.2010.02.031
  • He W, Guo Z, Wen Y, Wang Q, Xie B, Zhu S, Wang Q. Alginate-graft-PEI as a gene delivery vector with high efficiency and low cytotoxicity. J. Biomater. Sci., Polym. Ed. 2012;23:315–331.10.1163/092050610X550359
  • Yang J, Liu Y, Wang H, Liu L, Wang W, Wang C, Wang Q, Liu W. The biocompatibility of fatty acid modified dextran-agmatine bioconjugate gene delivery vector. Biomaterials. 2012;33:604–613.10.1016/j.biomaterials.2011.09.067
  • Kudlay A, Olvera de la Cruz MO. Precipitation of oppositely charged polyelectrolytes in salt solutions. J. Chem. Phys. 2004;120:404–412.10.1063/1.1629271
  • Tang GP, Zeng JM, Gao SJ, Ma YX, Shi L, Li Y, Too HP, Wang S. Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials. 2003;24:2351–2362.10.1016/S0142-9612(03)00029-2
  • Oupický D, Howard KA, Koňák Č, Dash PR, Ulbrich K, Seymour LW. Steric Stabilization of poly-Lysine/DNA complexes by the covalent attachment of semitelechelic poly[N(2-Hydroxypropyl)methacrylamide]. Bioconjugate Chem. 2000;11:492–501.10.1021/bc990143e
  • Ishihara K, Nakabayashi N. Specific interaction between water-soluble phospholipid polymer and liposome. J. Polym. Sci., Part A: Polym. Chem. 1991;29:831–835.10.1002/(ISSN)1099-0518
  • Lowe AB, Billingham NC, Armes SP. Synthesis of polybetaines with narrow molecular mass distribution and controlled architecture. Chem. Commun. 1996;1555–1556.10.1039/cc9960001555
  • Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules. 2008;9:1357–1361.10.1021/bm701301s
  • Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem. 2005;381:534–546.10.1007/s00216-004-2805-9
  • Ishihara K. Phospholipid polymers. Encyclopedia of Polymer Science and Technology. New York (NY): John Wiley & Sons, Inc.; 2012.
  • Xu J-P, Ji J, Chen W-D, Shen J-C. Novel biomimetic polymersomes as polymer therapeutics for drug delivery. J. Controlled Release. 2005;107:502–512.10.1016/j.jconrel.2005.06.013
  • Chien H-W, Tsai W-B, Jiang S. Direct cell encapsulation in biodegradable and functionalizable carboxybetaine hydrogels. Biomaterials. 2012;33:5706–5712.10.1016/j.biomaterials.2012.04.031
  • Chang Y, Chen S, Zhang Z, Jiang S. Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir. 2006;22:2222–2226.10.1021/la052962v
  • Bai T, Liu S, Sun F, Sinclair A, Zhang L, Shao Q, Jiang S. Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. Biomaterials. 2014;35:3926–3933.10.1016/j.biomaterials.2014.01.077
  • Sakaki S, Tsuchida M, Iwasaki Y, Ishihara K. A water-soluble phospholipid polymer as a new biocompatible synthetic DNA carrier. Bull. Chem. Soc. Jpn. 2004;77:2283–2288.10.1246/bcsj.77.2283
  • Lam JKW, Ma Y, Armes SP, Lewis AL, Stolnik S. Phosphorylcholine (PC) based polymers as potential vectors for gene delivery. J. Pharm. Pharmacol. 2004;56:S70–S70.
  • Dai F, Wang P, Wang Y, Tang L, Yang J, Liu W, Li H, Wang G. Double thermoresponsive polybetaine-based ABA triblock copolymers with capability to condense DNA. Polymer. 2008;49:5322–5328.10.1016/j.polymer.2008.09.060
  • Carr LR, Jiang S. Mediating high levels of gene transfer without cytotoxicity via hydrolytic cationic ester polymers. Biomaterials. 2010;31:4186–4193.10.1016/j.biomaterials.2010.01.110
  • Dai F, Liu W. Enhanced gene transfection and serum stability of polyplexes by PDMAEMA-polysulfobetaine diblock copolymers. Biomaterials. 2011;32:628–638.10.1016/j.biomaterials.2010.09.021
  • Sinclair A, Bai T, Carr LR, Ella-Menye JR, Zhang L, Jiang S. Engineering buffering and hydrolytic or photolabile charge shifting in a polycarboxybetaine ester gene delivery platform. Biomacromolecules. 2013;14:1587–1593.10.1021/bm400221r
  • Wang W, Nan WJ, Sun L, Liu WG. A systemic gene vector constructed by zwitterionic polymer modified low molecular weight PEI. React. Funct. Polym. 2013;73:993–1000.10.1016/j.reactfunctpolym.2013.05.003
  • Xiu K-M, Zhao N-N, Yang W-T, Xu F-J. Versatile functionalization of gene vectors via different types of zwitterionic betaine species for serum-tolerant transfection. Acta Biomater. 2013;9:7439–7448.10.1016/j.actbio.2013.04.010
  • Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998;39:323–330.10.1002/(ISSN)1097-4636
  • Konno T, Watanabe J, Ishihara K. Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups. Biomacromolecules. 2004;5:342–347.10.1021/bm034356p
  • Fukazawa K, Ishihara K. Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing. Biosens. Bioelectron. 2009;25:609–614.10.1016/j.bios.2009.02.034
  • Nishizawa K, Takai M, Ishihara K. Stabilization of phospholipid polymer surface with three-dimensional nanometer-scaled structure for highly sensitive immunoassay. Colloids Surf., B. 2010;77:263–269.10.1016/j.colsurfb.2010.02.008
  • Matsuno R, Ishihara K. Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications. Nano Today. 2011;6:61–74.10.1016/j.nantod.2010.12.009
  • Chantasirichot S, Ishihara K. Electrospun phospholipid polymer substrate for enhanced performance in immunoassay system. Biosens. Bioelectron. 2012;38:209–214.10.1016/j.bios.2012.05.029
  • Lin X, Nishio K, Konno T, Ishihara K. The effect of the encapsulation of bacteria in redox phospholipid polymer hydrogels on electron transfer efficiency in living cell-based devices. Biomaterials. 2012;33:8221–8227.10.1016/j.biomaterials.2012.08.035
  • Bloomfield VA. DNA condensation. Curr. Opin. Struct. Biol. 1996;6:334–341.10.1016/S0959-440X(96)80052-2
  • Bloomfield VA. DNA condensation by multivalent cations. Biopolymers. 1997;44:269–282.
  • Xu FJ, Yang WT. Polymer vectors via controlled/living radical polymerization for gene delivery. Prog. Polym. Sci. 2011;36:1099–1131.10.1016/j.progpolymsci.2010.11.005
  • Shim MS, Kwon YJ. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliver. Rev. 2012;64:1046–1059.10.1016/j.addr.2012.01.018
  • Kitagawa T, Iwase R, Ishihara K, Yamaoka T, Murakami A. Facilitated disassembly of polyplexes composed of self-assembling amphiphilic polycations enhances the gene transfer efficacy. Chem. Lett. 2005;34:1478–1479.10.1246/cl.2005.1478
  • Lobb EJ, Ma I, Billingham NC, Armes SP, Lewis AL. Facile synthesis of well-defined, biocompatible phosphorylcholine-based methacrylate copolymers via atom transfer radical polymerization at 20 °C. J. Am. Chem. Soc. 2001;123:7913–7914.10.1021/ja003906d
  • Ma Y, Tang Y, Billingham NC, Armes SP, Lewis AL, Lloyd AW, Salvage JP. Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media. Macromolecules. 2003;36:3475–3484.10.1021/ma021762c
  • Lam JKW, Ma Y, Armes SP, Lewis AL, Baldwin T, Stolnik S. Phosphorylcholine–polycation diblock copolymers as synthetic vectors for gene delivery. J. Controlled Release. 2004;100:293–312.10.1016/j.jconrel.2004.08.028
  • Chim YTA, Lam JKW, Ma Y, Armes SP, Lewis AL, Roberts CJ, Stolnik S, Tendler SJB, Davies MC. Structural study of DNA condensation induced by novel phosphorylcholine-based copolymers for gene delivery and relevance to DNA protection. Langmuir. 2005;21:3591–3598.10.1021/la047480i
  • Zhao XB, Zhang ZQ, Pan F, Ma YH, Armes SP, Lewis AL, Lu JR. DNA immobilization using biocompatible diblock phosphorylcholine copolymers. Surf. Interface Anal. 2006;38:548–551.10.1002/(ISSN)1096-9918
  • Zhao XB, Zhang ZQ, Pan F, Waigh TA, Lu JR. Plasmid DNA complexation with phosphorylcholine diblock copolymers and its effect on cell transfection. Langmuir. 2008;24:6881–6888.10.1021/la800593q
  • Du JZ, Tang YQ, Lewis AL, Armes SP. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J. Am. Chem. Soc. 2005;127:17982–17983.10.1021/ja056514l
  • Lomas H, Du J, Canton I, Madsen J, Warren N, Armes SP, Lewis AL, Battaglia G. Efficient encapsulation of plasmid DNA in pH-sensitive PMPC-PDPA polymersomes: study of the effect of PDPA block length on copolymer-DNA binding affinity. Macromol. Biosci. 2010;10:513–530.10.1002/mabi.v10:5
  • Licciardi M, Tang Y, Billingham NC, Armes SP. Synthesis of novel folic acid-functionalized biocompatible block copolymers by atom transfer radical polymerization for gene delivery and encapsulation of hydrophobic drugs. Biomacromolecules. 2005;6:1085–1096.10.1021/bm049271i
  • Lam JKW, Armes SP, Lewis AL, Stolnik S. Folate conjugated phosphorylcholine-based polycations for specific targeting in nucleic acids delivery. J. Drug Target. 2009;17:512–523.10.1080/10611860903023312
  • Ahmed M, Narain R. The effect of polymer architecture, composition, and molecular weight on the properties of glycopolymer-based non-viral gene delivery systems. Biomaterials. 2011;32:5279–5290.10.1016/j.biomaterials.2011.03.082
  • Ahmed M, Bhuchar N, Ishihara K, Narain R. Well-controlled cationic water-soluble phospholipid polymer−DNA nanocomplexes for gene delivery. Bioconjugate Chem. 2011;22:1228–1238.10.1021/bc2001159
  • Bhuchar N, Deng Z, Ishihara K, Narain R. Detailed study of the reversible addition–fragmentation chain transfer polymerization and co-polymerization of 2-methacryloyloxyethyl phosphorylcholine. Polym. Chem. 2011;2:632–639.10.1039/c0py00300j
  • Ahmed M, Jawanda M, Ishihara K, Narain R. Impact of the nature, size and chain topologies of carbohydrate–phosphorylcholine polymeric gene delivery systems. Biomaterials. 2012;33:7858–7870.10.1016/j.biomaterials.2012.07.004
  • Chiba N, Ueda M, Shimada T, Jinno H, Watanabe J, Ishihara K, Kitajima M. Development of gene vectors for pinpoint targeting to human hepatocytes by cationically modified polymer complexes. Eur. Surg. Res. 2007;39:23–34.10.1159/000098437
  • Sun J, Zeng F, Jian H, Wu S. Grafting zwitterionic polymer chains onto PEI as a convenient strategy to enhance gene delivery performance. Polym. Chem. 2013;4:5810–5818.10.1039/c3py00752a
  • Funhoff AM, van Nostrum CF, Koning GA, Schuurmans-Nieuwenbroek NME, Crommelin DJA, Hennink WE. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules. 2004;5:32–39.10.1021/bm034041+
  • Kogure K, Akita H, Yamada Y, Harashima H. Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv. Drug Deliver. Rev. 2008;60:559–571.10.1016/j.addr.2007.10.007
  • Tyagi S. Imaging intracellular RNA distribution and dynamics in living cells. Nat. Methods. 2009;6:331–338.10.1038/nmeth.1321
  • Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W. Molecular engineering of DNA: molecular beacons. Angew. Chem. Int. Ed. 2009;48:856–870.10.1002/anie.v48:5
  • Lin X, Konno T, Ishihara K. Cell-membrane-permeable and cytocompatible phospholipid polymer nanoprobes conjugated with molecular beacons. Biomacromolecules. 2014;15:150–157.10.1021/bm401430 k
  • Mahoney MJ, Anseth KS. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials. 2006;27:2265–2274.10.1016/j.biomaterials.2005.11.007
  • Han S, Kim C, Kwon D. Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer. 1997;38:317–323.10.1016/S0032-3861(97)88175-X
  • Glastrup J. Degradation of polyethylene glycol. A study of the reaction mechanism in a model molecule: tetraethylene glycol. Polym. Degrad. Stab. 1996;52:217–222.10.1016/0141-3910(95)00225-1
  • Kawai F, Yamanaka H. Biodegradation of polyethylene glycol by symbiotic mixed culture (obligate mutualism). Arch. Microbiol. 1986;146:125–129.10.1007/BF00402338
  • Wang X, Ishida T, Kiwada H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J. Controlled Release. 2007;119:236–244.10.1016/j.jconrel.2007.02.010
  • Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, Kiwada H. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J. Controlled Release. 2006;112:15–25.10.1016/j.jconrel.2006.01.005
  • Ishida T, Wang X, Shimizu T, Nawata K, Kiwada H. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J. Controlled Release. 2007;122:349–355.10.1016/j.jconrel.2007.05.015
  • Chang Y, Chen W-Y, Yandi W, Shih Y-J, Chu W-L, Liu Y-L, Chu C-W, Ruaan R-C, Higuchi A. Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropyl acrylamide). Biomacromolecules. 2009;10:2092–2100.10.1021/bm900208u
  • Shih Y-J, Chang Y. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir. 2010;26:17286–17294.10.1021/la103186y
  • Chang Y, Liao S-C, Higuchi A, Ruaan R-C, Chu C-W, Chen W-Y. A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir. 2008;24:5453–5458.10.1021/la800228c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.