600
Views
20
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of dendritic star-shaped zwitterionic polymers as novel anticancer drug delivery carriers

, , , , , & show all
Pages 1641-1657 | Received 08 Apr 2014, Accepted 17 Jun 2014, Published online: 15 Jul 2014

References

  • Wang Y, Grayson SM. Approaches for the preparation of non-linear amphiphilic polymers and their applications to drug delivery. Adv. Drug Deliv. Rev. 2012;64:852–865.10.1016/j.addr.2012.03.011
  • Cao WQ, Zhu L. Synthesis and unimolecular micelles of amphiphilic dendrimer-like star polymer with various functional surface groups. Macromolecules. 2011;44:1500–1512.10.1021/ma1021242
  • Pang XC, Zhao L, Akinc M, Kim JK, Lin ZQ. Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles. Macromolecules. 2011;44:3746–3752.10.1021/ma200594j
  • Zhang CB, Zhou Y, Liu Q, Li SX, Perrier S, Zhao YL. Facile synthesis of hyperbranched and star-shaped polymers by RAFT polymerization based on a polymerizable trithiocarbonate. Macromolecules. 2011;44:2034–2049.10.1021/ma1024736
  • Hadjichristidis N, Pitsikalis M, Pispas S, Latrou H. Polymers with complex architecture by living anionic polymerization. Chem. Rev. 2001;101:3747–3792.10.1021/cr9901337
  • Duncan R, Lzzo L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev. 2005;57:2215–2237.10.1016/j.addr.2005.09.019
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev. 2012;64:102–115.10.1016/j.addr.2012.09.030
  • Xu J, Luo SZ, Shi WF, Liu SY. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir. 2006;22:989–997.10.1021/la0522707
  • Luo SZ, Xu J, Zhu ZY, Wu C, Liu SY. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J. Phys. Chem. 2006;110:9132–9139.10.1021/jp061055b
  • Li XJ, Qian YF, Liu T, Hu XL, Zhang GY, You YZ, Liu SY. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials. 2011;32:6595–6605.10.1016/j.biomaterials.2011.05.049
  • Hu H, Fan XD, Cao ZL. Thermo- and pH-sensitive dendrimer derivatives with a shell of poly(N, N-dimethylaminoethyl methacrylate) and study of their controlled drug release behavior. Polymer. 2005;46:9514–9522.10.1016/j.polymer.2005.07.034
  • Wang F, Bronich TK, Kabanov AV, Rauh RD, Roovers J. Synthesis and evaluation of a star amphiphilic block copolymer from poly(E-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjugate Chem. 2005;16:397–405.10.1021/bc049784m
  • Zhao YL, Song YT, Jiang W, Zhang B, Li YP, Sha K, Wang SW, Chen L, Ma LN, Wang JY. Synthesis of a novel star polymer consisting of a dendritic polyamidoamine core and polystyrene arms and its self-assembly to form large multimolecular micelles. J. Appl. Polym. Sci. 2008;109:1039–1047.10.1002/(ISSN)1097-4628
  • Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today. 2001;6:427–436.10.1016/S1359-6446(01)01757-3
  • Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Controlled Release. 2000;65:133–148.10.1016/S0168-3659(99)00246-1
  • Kim Y, Klutz AM, Jacobson KA. Systematic investigation of polyamidoamine dendrimers surface-modified with Poly(ethylene glycol) for drug delivery applications: Synthesis, characterization, and evaluation of cytotoxicity. Bioconjugate Chem. 2008;19:1660–1672.10.1021/bc700483s
  • Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having Poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjugate Chem. 2000;11:910–917.10.1021/bc0000583
  • Yang H, Morris JJ, Lopina ST. Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J. Colloid Interface Sci. 2004;273:148–154.10.1016/j.jcis.2003.12.023
  • Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjugate Chem. 2007;18:2054–2060.10.1021/bc0603889
  • Wang Y, Guo R, Cao XY, Shen MW, Shi XY. Encapsulation of 2-methoxyestradiol with in multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials. 2011;32:3322–3329.10.1016/j.biomaterials.2010.12.060
  • Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 2003;252:263–266.10.1016/S0378-5173(02)00623-3
  • Jia L, Xu JP, Wang H, Ji J. Polyamidoamine dendrimers surface-engineered with biomimetic phosphorylcholine as potential drug delivery carriers. Colloids Surf. B. 2011;84:49–54.10.1016/j.colsurfb.2010.12.012
  • Wang LG, Wang Z, Ma GL, Lin WF, Chen SF. Reducing the cytotoxity of poly(amidoamine) dendrimers by the modification of a single layer of carboxybetaine. Langmuir. 2013;29:8914–8921.10.1021/la400623s
  • Jiang H, Wang XB, Li CY, Li JS, Xu FJ, Mao C, Yang WT, Shen J. Improvement of hemocomp atibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Langmuir. 2011;27:11575–11581.10.1021/la202101q
  • Yuan B, Chen Q, Ding WQ, Liu PS, Wu SS, Lin SC, Shen J, Gai Y. Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility. Appl. Mater. Interfaces. 2012;4:4031–4039.10.1021/am3008399
  • Ladd J, Zhang Z, Chen SF, Hower JC, Jiang SY. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules. 2008;9:1357–1361.10.1021/bm701301s
  • Kuo WH, Wang MJ, Chien HW, Wei TC, Lee C, Tsai WB. Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules. 2012;12:4348–4356.
  • Cao ZQ, Jiang SY. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today. 2012;4:404–413.10.1016/j.nantod.2012.08.001
  • Carr LR, Xue H, Jiang SY. Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials. 2011;32:961–968.10.1016/j.biomaterials.2010.09.067
  • Cao ZQ, Jiang SY. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010;22:920–932.
  • Zhang XY, Zhao J, Wen Y, Zhu CS, Yang J, Yao FL. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery. Carbohydr. Polym. 2013;98:1326–1334.10.1016/j.carbpol.2013.08.005
  • Wen Y, Tan ZL, Sun F, Sheng L, Zhang XY, Yao FL. Synthesis and characterization of quaternized carboxymethyl chitosan/poly(amidoamine) dendrimer core-shell nanoparticles. Mater. Sci. Eng. 2012;32:2026–2036.10.1016/j.msec.2012.05.019
  • Meng FH, Zhong YN, Cheng R, Deng C, Zhong ZY. pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine. 2014;9:487–499.10.2217/nnm.13.212
  • Boas U, Heegaard PMH. Dendrimers in drug research. Chem. Soc. Rev. 2004;33:43–63.10.1039/b309043b
  • Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kwon GS. Doxorubicin-loaded poly(ethylene glycol)–poly(b-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J. Controlled Release. 2000;64:143–153.10.1016/S0168-3659(99)00133-9
  • Patri AK, Majoros IJ, Baker JR. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol. 2002;6:466–471.10.1016/S1367-5931(02)00347-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.