297
Views
16
CrossRef citations to date
0
Altmetric
Articles

Uptake enhancement of curcumin encapsulated into phosphatidylcholine-shielding micelles by cancer cells

, , , &
Pages 1407-1424 | Received 15 Mar 2014, Accepted 01 Jul 2014, Published online: 29 Jul 2014

References

  • Liu J, Chen S, Lv L, Song L, Guo S, Huang S. Recent progress in studying curcumin and its nano-preparations for cancer therapy. Curr. Pharm. Des. 2013;19:1974–1993.
  • Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr. Pharm. Des. 2013;19:2047–2069.
  • Bereswill S, Muñoz M, Fischer A, Plickert R, Haag L-M, Otto B, Kühl AA, Loddenkemper C, Göbel UB, Heimesaat MM. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PloS one. 2010;5:e15099.10.1371/journal.pone.0015099
  • Khalil OAK, de Faria Oliveira OMM, Vellosa JCR, de Quadros AU, Dalposso LM, Karam TK, Mainardes RM, Khalil NM. Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid. Food Chem. 2012;133:1001–1005.10.1016/j.foodchem.2012.02.009
  • Wahlström B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharm. Toxicol. 1978;43:86–92.
  • Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004;10:6847–6854.10.1158/1078-0432.CCR-04-0744
  • Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V, Kurzrock R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res. 2008;14:4491–4499.10.1158/1078-0432.CCR-08-0024
  • Gangwar RK, Dhumale VA, Kumari D, Nakate UT, Gosavi SW, Sharma RB, Kale SN, Datar S. Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability. Mater. Sci. Eng: C. 2012;32:2659–2663.10.1016/j.msec.2012.07.022
  • Gangwar RK, Tomar GB, Dhumale VA, Zinjarde S, Sharma RB, Datar S. Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J. Agric. Food Chem. 2013;61:9632–9637.
  • Lv L, Shen Y, Liu J, Wang F, Li M, Li M, Guo A, Wang Y, Zhou D, Guo S. Enhancing curcumin anticancer efficacy through di-block copolymer micelle encapsulation. J. Biomed. Nanotechnol. 2014;10:179–193.10.1166/jbn.2014.1809
  • Lv L, Shen Y, Li M, Xu X, Li M, Guo S, Huang S. Preparation and in vitro evaluation of novel poly(anhydride-ester)-based amphiphilic copolymer curcumin-loaded micelles. J. Biomed. Nanotechnol. 2014;10:324–335.10.1166/jbn.2014.1789
  • Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J. Biomed. Mater. Res. Part A. 2008;86:300–310.10.1002/(ISSN)1552-4965
  • Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol) – palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater. 2008;4:1752–1761.10.1016/j.actbio.2008.04.021
  • Mukerjee A, Vishwanatha JK. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res. 2009;29:3867–3875.
  • Mohanty C, Sahoo SK. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials. 2010;31:6597–6611.10.1016/j.biomaterials.2010.04.062
  • Sahu A, Kasoju N, Goswami P, Bora U. Encapsulation of curcumin in pluronic block copolymer micelles for drug delivery applications. J. Biomater. Appl. 2011;25:619–639.10.1177/0885328209357110
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001;47:113–131.10.1016/S0169-409X(00)00124-1
  • Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 2013;42:1147–1235.10.1039/c2cs35265f
  • Le TTD, La TH, Le TMP, Pham VP, Nguyen TMH, Le QH. Docetaxel and curcumin-containing poly(ethylene glycol)-block-poly(ε-caprolactone) polymer micelles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013;4:025006 5pp.
  • Raveendran R, Bhuvaneshwar GS, Sharma CP. In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells. J. Biomater. Appl. 2013;27:811–827.10.1177/0885328211427473
  • Thu HP, Quang DT, Trang MTT, Ha TTH, Nam NH, Phuc NX, Nguyet TTM, Thong PQ, Tuyet PTH, Oanh VTK, Huong LM. In vitro apoptosis enhancement of Hep-G2 cells by PLA-TPGS and PLA-PEG block copolymer encapsulated curcumin nanoparticles. Chem. Lett. 2013;42:255–257.10.1246/cl.2013.255
  • Yang R, Zhang S, Kong D, Gao X, Zhao Y, Wang Z. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm. Res. 2012;29:3512–3525.10.1007/s11095-012-0848-8
  • Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. 2011;3:1558–1567.10.1039/c0nr00758g
  • Mohanty C, Acharya S, Mohanty A, Dilnawaz F, Sahoo S. Curcumin encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine. 2010;5:433–449.
  • Taurin S, Nehoff H, Diong J, Larsen L, Rosengren RJ, Greish K. Curcumin-derivative nanomicelles for the treatment of triple negative breast cancer. J. Drug Target. 2013;21:675–683.10.3109/1061186X.2013.796955
  • Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 2010;49:6288–6308.10.1002/anie.200902672
  • Zhou W, Shao J, Jin Q, Wei Q, Tang J, Ji J. Zwitterionic phosphorylcholine as a better ligand for gold nanorods cell uptake and selective photothermal ablation of cancer cells. Chem. Commun. 2010;46:1479–1481.10.1039/b915125g
  • Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano. 2008;2:1639–1644.10.1021/nn800330a
  • Sawyers CL. The cancer biomarker problem. Nature. 2008;452:548–552.10.1038/nature06913
  • Du J, Tang Y, Lewis AL, Armes SP. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J. Am. Chem. Soc. 2005;127:17982–17983.10.1021/ja056514l
  • Massignani M, LoPresti C, Blanazs A, Madsen J, Armes SP, Lewis AL, Battaglia G. Controlling cellular uptake by surface chemistry, size, and surface topology at the nanoscale. Small. 2009;5:2424–2432.10.1002/smll.v5:21
  • Liu G, Hu X, Chen C, Jin Q, Ji J. Self-assembly and degradation of poly[(2-methacryloyloxyethyl phosphorylcholine)-block-(D, L-lactide)] diblock copolymers: large compound micelles to vesicles. Polym. Int. 2011;60:578–583.10.1002/pi.v60.4
  • Liu GY, Lv LP, Chen CJ, Hu XF, Ji J. Biocompatible poly(D, L-lactide)-block-poly(2-methacryloyloxyethylphosphorylcholine) micelles for drug delivery. Macromol. Chem. Phys. 2011;212:643–651.10.1002/macp.v212.6
  • Cao J, Zhai S, Li C, He B, Lai Y, Chen Y, Luo X, Gu Z. Novel pH-sensitive micelles generated by star-shape copolymers containing zwitterionic sulfobetaine for efficient cellular internalization. J. Biomed. Nanotechnol. 2013;9:1847–1861.10.1166/jbn.2013.1686
  • Tu S, Chen YW, Qiu YB, Zhu K, Luo XL. Enhancement of cellular uptake and antitumor efficiencies of micelles with phosphorylcholine. Macromol. Biosci. 2011;11:1416–1425.10.1002/mabi.v11.10
  • Licciardi M, Giammona G, Du J, Armes SP, Tang Y, Lewis AL. New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems. Polymer. 2006;47:2946–2955.10.1016/j.polymer.2006.03.014
  • Yusa S-I, Fukuda K, Yamamoto T, Ishihara K, Morishima Y. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules. 2005;6:663–670.10.1021/bm0495553
  • Chen L, Wang H, Zhang Y, Wang Y, Hu Q, Ji J. Bioinspired phosphorylcholine-modified polyplexes as an effective strategy for selective uptake and transfection of cancer cells. Colloids Surf. B. 2013;111:297–305.10.1016/j.colsurfb.2013.06.021
  • Bogdanov B, Vidts A, Van Den Buicke A, Verbeeck R, Schacht E. Synthesis and thermal properties of poly(ethylene glycol)-poly(ε-caprolactone) copolymers. Polymer. 1998;39:1631–1636.10.1016/S0032-3861(97)00444-8
  • Mohanty C, Acharya S, Mohanty AK, Dilnawaz F, Sahoo SK. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine. 2010;5:433–449.10.2217/nnm.10.9
  • Gong C, Deng S, Wu Q, Xiang M, Wei X, Li L, Gao X, Wang B, Sun L, Chen Y, Li Y, Liu L, Qian Z, Wei Y. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials. 2013;34:1413–1432.10.1016/j.biomaterials.2012.10.068
  • Wilhelm M, Zhao CL, Wang Y, Xu R, Winnik MA, Mura JL, Riess G, Croucher MD. Poly (styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules. 1991;24:1033–1040.10.1021/ma00005a010
  • Cao J, Lu A, Li C, Cai M, Chen Y, Li S, Luo X. Effect of architecture on the micellar properties of poly (ε-caprolactone) containing sulfobetaines. Colloids Surf. B. 2013;112:35–41.10.1016/j.colsurfb.2013.07.038
  • Podaralla S, Averineni R, Alqahtani M, Perumal O. Synthesis of novel biodegradable methoxy poly(ethylene glycol)-zein micelles for effective delivery of curcumin. Mol. Pharm. 2012;9:2778–2786.10.1021/mp300639n
  • Puvvada N, Rajput S, Kumar BNP, Mandal M, Pathak A. Exploring the fluorescence switching phenomenon of curcumin encapsulated niosomes: in vitro real time monitoring of curcumin release to cancer cells. Rsc Adv. 2013;3:2553–2557.10.1039/c2ra23382g
  • Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini KI. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta (BBA) – Gen. Sub. 2008;1780:673–679.10.1016/j.bbagen.2007.11.016
  • Mohanty C, Acharya S, Mohanty AK, Dilnawaz F, Sahoo SK. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine. 2010;5:433–449.10.2217/nnm.10.9
  • Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines through particle design. Small. 2011;7:1919–1931.10.1002/smll.201100442

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.