391
Views
6
CrossRef citations to date
0
Altmetric
Review Paper

Something between the amazing functions and various morphologies of self-assembling peptides materials in the medical field

, , , , , , & show all
Pages 1331-1345 | Received 31 Mar 2014, Accepted 08 Jul 2014, Published online: 04 Aug 2014

References

  • Zhang SG, Marini DM, Hwang W, Santoso S. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr. Opin. Chem. Biol. 2002;6:865–871.10.1016/S1367-5931(02)00391-5
  • Zhang SG. Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 2002;20:321–339.10.1016/S0734-9750(02)00026-5
  • Kumar P, Pillay V, Modi G, Choonara YE, du Toit LC, Naidoo D. Self-assembling peptides: implications for patenting in drug delivery and tissue engineering. Recent Pat. Drug Deliv. Formul. 2011;5:24–51.10.2174/187221111794109510
  • Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery. Acta Biomater. 2009;5:817–831.10.1016/j.actbio.2008.09.018
  • Heller M, Wei C. Self-assembly peptide prevents blood loss. Nanomed.: Nanotechnol., Biol. Med. 2006;2:216.10.1016/j.nano.2006.10.158
  • Mor Amram. Peptide-based antibiotics: a potential answer to raging antimicrobial resistance. Drug Dev. Res. 2000;50:440–447.10.1002/(ISSN)1098-2299
  • Bhattacharyya S, Kumbar SG, Khan YM, Nair LS, Singh A, Krogman NR, Brown PW, Allcock HR, Laurencin CT. Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering. J. Biomed. Nanotechnol. 2009;5:69–75.10.1166/jbn.2009.032
  • Vander Veen VC, Boekema BK, Ulrich MM, Middelkoop E. New dermal substitutes. Wound Repair Regen. 2011;1:s59–65.
  • Cunha C, Panseri S, Gelain F. Engineering of a 3D nanostructured scaffold made of functionalized self-assembling peptides and encapsulated neural stem cells. Methods Mol. Biol. 2013;1058:171–182.10.1007/978-1-62703-571-2
  • Zhang S, Gelain F, Zhao X. Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin. Cancer. Biol. 2005;15:413–420.10.1016/j.semcancer.2005.05.007
  • Fung SY, Keyes C, Duhamel J, Chen P. Concentration effect on the aggregation of a self-assembling oligopeptide. Biophys. J. 2003;85:537–548.10.1016/S0006-3495(03)74498-1
  • Yang H, Fung S, Pritzker M, Chen P. Modification of hydrophilic and hydrophobic surfaces using an ionic-complementary peptide. PLoS One. 2007;2:e1325.10.1371/journal.pone.0001325
  • Konturek SJ, Pawlik W. Physiology and pharmacology of prostaglandins. Dig. Dis. Sci. 1986;31:6S–19S.10.1007/BF01309317
  • Hoffman M. The cellular basis of traumatic bleeding. Mil. Med. 2004;169:(12Suppl):5–7, 45–7.
  • Blocksom JM, Sugawa C, Tokioka S, Williams M. Case report: the hemoclip: a novel approach to endoscopic therapy for esophageal perforation. Dig. Dis. Sci. 2004;49:1136–1138.10.1023/B:DDAS.0000037800.78510.0d
  • Ellis-Behnke RG, Liang YX, Tay DK, Kau PW, Schneider GE, Zhang S, Wu W, So KF. Nanohemostat solution: immediate hemostasis at the nanoscale. Nanomedicine. 2006;2:207–215.
  • Edwards R, Harding KG. Bacteria and wound healing. Curr. Opin. Infect. Dis. 2004;17:91–96.10.1097/00001432-200404000-00004
  • Siddiqui AR, Bernstein JM. Chronic wound infection: facts and controversies. Clin. Dermatol. 2010;28:519–526.10.1016/j.clindermatol.2010.03.009
  • Berl V, Huc I, Khoury RG, Krische MJ, Lehn JM. Interconversion of single and double helices formed from synthetic molecular strands. Nature. 2000;407:720–723.
  • Gazit E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 2007;36:1263–1269.10.1039/b605536m
  • Jun S, Hong Y, Imamura H, Ha BY, Bechhoefer J, Chen P. Self-assembly of the ionic peptide EAK16: the effect of charge distributions on self-assembly. Bio. J. 2004;87:1249–1259.
  • Yang H, Fung S, Pritzker M, Chen P. Modification of hydrophilic and hydrophobic surfaces using an ionic-complementary peptide. PLoS One. 2007;2:e1325.10.1371/journal.pone.0001325
  • Matsui H, Gologan B, Pan S, Douberly GEJ. Controlled immobilization of peptide nanotube-templated metallic wires on Au surfaces. Eur. Phy. J. 2001;16:403–406.
  • Santoso S, Hwang W, Hartman H, Zhang SG. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano. Lett. 2002;2:687–691.10.1021/nl025563i
  • Haldar D, Banerjee A, Drew M, Das A, Banerjee A. First crystallographic signature of an acyclic peptide nanorod: molecular mechanism of nanorod formation by a self-assembled tetrapeptide. Chem. Commun. 2003;12:1406–1407.10.1039/b302472p
  • Liu J, Zhao X. Design of self-assembling peptides and their biomedical applications. Nanomedicine. 2011;6:1621–1643.10.2217/nnm.11.142
  • Han SH, Lee MK, Lim YB. Bioinspired self-assembled peptide nanofibers with thermostable multivalent α-helices. Biomacromolecules. 2013;14:1594–1599.10.1021/bm400233x
  • Robert JM, Rachel DO, Molly MS, Rein VU. Peptide-based stimuli-responsive biomaterials. Soft Matter. 2006;2:822–835.
  • Zhang S, Zhao X. Design of molecular biological materials using peptide motifs. J. Mater. Chem. 2004;14:2082–2086.10.1039/b406136e
  • Li LS, Jiang H, Messmore BW, Bull SR, Stupp SI. A torsional strain mechanism to tune pitch in supramolecular helices. Angew. Chem. Int. Ed. 2007;46:5873–5876.10.1002/(ISSN)1521-3773
  • Paramonov SE, Jun HW, Hartgerink JD. Self-assembly of peptide−amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J. Am. Chem. Soc. 2006;128:7291–7298.10.1021/ja060573x
  • Hong Y, Legge RL, Zhang S, Chen P. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV. Biomacromolecules. 2003;4:1433–1442.10.1021/bm0341374
  • Zhao Y, Yokoi H, Tanaka M, Kinoshita T, Tan T. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Biomacromolecules. 2008;9:1511–1518.10.1021/bm701143g
  • Yokoi H, Kinoshita T, Zhang SG. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Nat. Acad. Sci. U.S.A. 2005;102:8414–8419.10.1073/pnas.0407843102
  • Vauthey S, Santoso S, Gong H, Watson N, Zhang S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Nat. Acad. Sci. U.S.A. 2002;99:5355–5360.10.1073/pnas.072089599
  • Zhao X, Zhang S. Designer self-assembling peptide materials. Macromol. Biosci. 2007;7:13–22.10.1002/(ISSN)1616-5195
  • Maltzahn VG, Vauthey S, Santoso S, Zhang SG. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir. 2003;19:4332–4337.10.1021/la026526+
  • Winger TM, Ludovice PJ, Chaikof EL. Lipopeptide conjugates: biomolecular building blocks for receptor activating membrane-mimetic structures. Biomaterials. 1996;17:437–441.10.1016/0142-9612(96)89661-X
  • Yu YC, Roontga V, Daragan VA, Mayo KH, Tirrell M, Fields GB. Structure and dynamics of peptide−amphiphiles incorporating triple-helical proteinlike molecular architecture. Biochemistry. 1999;38:1659–1668.10.1021/bi982315l
  • Kunitake T. Synthetic bilayer membranes: molecular design, self-organization, and application. Angew. Chem. Int. Ed. 1992;31:709–726.10.1002/(ISSN)1521-3773
  • Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684–1688.10.1126/science.1063187
  • Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc. Nat. Acad. Sci. U.S.A. 2002;99:5133–5138.10.1073/pnas.072699999
  • Cui HG, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers. 2010;94:1–18.10.1002/bip.21328
  • Xu XD, Chen CS, Lu B, Cheng SX, Zhang XZ, Zhuo RX. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels. J. Phys. Chem. B. 2010;114:2365–2372.10.1021/jp9102417
  • Ellis-Behnke RG, Liang YX, You SW, Tay DKC, Zhang S, So KF. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Nat. Acad. Sci. U.S.A. 2006;103:5054–5059.10.1073/pnas.0600559103
  • Murphy MB, Blashki D, Buchanan RM, Fan D, De Rosa E, Shah RN, Stupp SI, Weiner BK, Simmons PJ, Ferrari M, Tasciotti E. Multi-composite bioactive osteogenic sponges featuring mesenchymal stem cells, platelet-rich plasma, nanoporous silicon enclosures, and peptide amphiphiles for rapid bone regeneration. J. Funct. Biomater. 2011;2:39–66.10.3390/jfb2020039
  • Grodzinsky A, Kerin A, Kisiday J. Biomechanics in cartilage tissue engineering. Eur. Cell Mater. 2002;4:21.
  • Genové E, Shen C, Zhang S, Semino CE. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials. 2005;26:3341–3351.10.1016/j.biomaterials.2004.08.012
  • Ashammakhi N, Reis R, Chiellini F, editors. Topics in Tissue Engineering. Oulu: E-Publishing Inc; 2008.
  • Shastri VP. In vivo engineering of tissues: biological considerations, challenges, strategies, and future directions. Adv. Mater. 2009;21:3246–3254.10.1002/adma.v21:32/33
  • Ma PX, Elisseeff JH, editors. Scaffolding in Tissue Engineering. Boca Raton, FL: CRC; 2005.
  • Gelain F, Bottai D, Vescovi A, Zhang S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One. 2006;1:e119.10.1371/journal.pone.0000119
  • Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Nat. Acad. Sci. U.S.A. 2000;97:6728–6733.10.1073/pnas.97.12.6728
  • McGrath AM, Novikova LN, Novikov LN, Wiberg M. BD™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. Brain Res. Bull. 2010;83:207–213.10.1016/j.brainresbull.2010.07.001
  • Guo J, Su H, Zeng Y, Liang YX, Wong WM, Ellis-Behnke RG, So KF, Wu W. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomed.: Nanotechnol., Biol. Med. 2007;3:311–321.10.1016/j.nano.2007.09.003
  • Guo J, Leung KKG, Su H, Yuan Q, Wang L, Chu TH, Zhang W, Pu JKS, Ng GKP, Wong WM, Dai X, Wu W. Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomed.: Nanotechnol., Biol. Med. 2009;5:345–351.10.1016/j.nano.2008.12.001
  • Davis ME, Motion JPM, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation. 2005;111:442–450.10.1161/01.CIR.0000153847.47301.80
  • Horii A, Wang X, Gelain F, Zhang S. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One. 2007;2:e190.10.1371/journal.pone.0000190
  • Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Nat. Acad. Sci. U.S.A. 2000;97:6728–6733.10.1073/pnas.97.12.6728
  • Zhang L, Song H, Zhao X. Self-assembling short-peptide hydrogel for three-dimensional culture of rabbit articular chondrocytes in vitro. J. Clin. Rehab. Tiss. Eng. Res. 2008;12:9779–9782.
  • Firth A, Aggeli A, Burke JL, Yang X, Kirkham J. Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine. 2006;1:189–199.10.2217/17435889.1.2.189
  • Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore RC, Brookes SJ, Aggeli A. Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res. 2007;86:426–430.10.1177/154405910708600507
  • Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP. Cytocompatibility of self-assembled β-hairpin peptide hydrogel surfaces. Biomaterials. 2005;26:5177–5186.10.1016/j.biomaterials.2005.01.029
  • Gungormus M, Branco M, Fong H, Schneider JP, Tamerler C, Sarikaya M. Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides. Biomaterials. 2010;31:7266–7274.10.1016/j.biomaterials.2010.06.010
  • Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN. Rational design and application of responsive α-helical peptide hydrogels. Nat. Mater. 2009;8:596–600.10.1038/nmat2479
  • Mishra A, Loo YH, Deng RH, Chuah YJ, Hee HT, Ying JY, Hauser Charlotte AE. Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today. 2011;6:232–239.10.1016/j.nantod.2011.05.001
  • Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery. Acta Biomater. 2009;5:817–831.10.1016/j.actbio.2008.09.018
  • Rymer SJ, Tendler SJ, Bosquillon C, Washington C, Roberts CJ. Self-assembling peptides and their potential applications in biomedicine. Ther. Delivery. 2011;2:1043–1056.10.4155/tde.11.74
  • Liang J, Wu WL, Xu XD, Zhuo RX, Zhang XZ. pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier. Colloids Surf., B. 2014;114:398–403.10.1016/j.colsurfb.2013.10.037
  • Wiradharma N, Khan M, Tong YW, Wang S, Yang YY. Self-assembled cationic peptide nanoparticles capable of inducing efficient gene expression in vitro. Adv. Funct. Mater. 2008;18:943–951.10.1002/(ISSN)1616-3028
  • Han K, Chen S, Chen WH, Lei Q, Liu Y, Zhuo RX, Zhang XZ. Synergistic gene and drug tumor therapy using a chimeric peptide. Biomaterials. 2013;34:4680–4689.10.1016/j.biomaterials.2013.03.010
  • Holowka EP, Pochan DJ, Deming TJ. Charged polypeptide vesicles with controllable diameter. J. Am. Chem. Soc. 2005;127:12423–12428.10.1021/ja053557t
  • Van Hell AJ, Costa CI, Flesch FM, Sutter M, Jiskoot W, Crommelin DJ, Hennink WE, Mastrobattista E. Self-assembly of recombinant amphiphilic oligopeptides into vesicles. Biomacromolecules. 2007;8:2753–2761.10.1021/bm0704267
  • Schneider A, Garlick JA, Egles C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS ONE. 2008;3:e1410.10.1371/journal.pone.0001410
  • Singer AJ, Clark RAF. Mechanisms of disease: cutaneous wound healing. N. Engl. J. Med. 1999;341:738–746.
  • Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R. Proteinase-activated receptors. Pharmacol. Rev. 2001;53:245–282.
  • Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials. 2011;32:5906–5914.10.1016/j.biomaterials.2011.04.069
  • Branco MC, Pochan DJ, Wagner NJ, Schneider JP. Macromolecular diffusion and release from self-assembled β-hairpin peptide hydrogels. Biomaterials. 2009;30:1339–1347.10.1016/j.biomaterials.2008.11.019
  • Vauthey S, Santoso S, Gong H, Watson N, Zhang S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Nat. Acad. Sci. U.S.A. 2002;99:5355–5360.10.1073/pnas.072089599
  • Liu H, Chen J, Shen Q, Fu W, Wu W. Molecular insights on the cyclic peptide nanotube-mediated transportation of antitumor drug 5-fluorouracil. Mol. Pharm. 2010;7:1985–1994.10.1021/mp100274f
  • Song H, Zhang L, Zhao X. Hemostatic efficacy of biological self-assembling peptide nanofibers in a rat kidney model. Macromol. Biosci. 2010;10:33–39.10.1002/mabi.v10:1
  • Tomizawa Y. Clinical benefits and risk analysis of topical hemostats: a review. J. Artif. Organs. 2005;8:137–142.10.1007/s10047-005-0296-x
  • Ruan L, Zhang H, Luo H, Liu J, Tang F, Shi YK, Zhao X. Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc. Nat. Acad. Sci. U.S.A. 2009;106:5105–5110.10.1073/pnas.0900026106
  • Fernandez-Lopez S, Kim HS, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR. Antibacterial agents based on the cyclic D,L- a-peptide architecture. Nature. 2001;412:452–455.10.1038/35086601
  • Horne WS, Wiethoff CM, Cui C, Wilcoxen KM, Amorin M, Ghadiri MR, Nemerow GR. Antiviral cyclic D,L -a -peptides: targeting a general biochemical pathway in virus infections. Bioorgan. Med. Chem. 2005;13:5145–5153.10.1016/j.bmc.2005.05.051
  • Salick DA, Kretsinger JK, Pochan DJ, Schneider JP. Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J. Am. Chem. Soc. 2007;129:14793–14799.10.1021/ja076300z
  • Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MA, Schneider JP. Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials. 2012;33:8907–8916.10.1016/j.biomaterials.2012.08.046
  • Yang Z, Liang G, Guo Z, Guo Z, Xu B. Intracellular hydrogelation of small molecules inhibits bacterial growth. Angew. Chem. Int. Ed. 2007;46:8216–8219.10.1002/(ISSN)1521-3773
  • Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang YY. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol. 2009;4:457–463.10.1038/nnano.2009.153
  • Cho S, Wang Q, Swaminathan CP, Hesek D, Lee M, Boons GJ, Mobashery S, Mariuzza RA. Structural insights into the bactericidal mechanism of human peptidoglycan recognition proteins. Proc. Nat. Acad. Sci. U.S.A. 2007;104:8761–8766.10.1073/pnas.0701453104
  • Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta. 2006;1758:1184–1202.10.1016/j.bbamem.2006.04.006
  • Neuwelt EA. Mechanisms of disease: the blood–brain barrier. Neurosurgery. 2004;54:131–142.10.1227/01.NEU.0000097715.11966.8E

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.