222
Views
20
CrossRef citations to date
0
Altmetric
Articles

Fabrication of porous chitosan-polyvinyl pyrrolidone scaffolds from a quaternary system via phase separation

, &
Pages 32-41 | Received 08 Aug 2014, Accepted 18 Oct 2014, Published online: 20 Nov 2014

References

  • Serrano MC, Gutiérrez MC, del Monte F. Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Prog. Polym. Sci. 2014;39:1448–1471.10.1016/j.progpolymsci.2014.02.004
  • Dorati R, Colonna C, Tomasi C, Genta I, Bruni G, Conti B. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Mater. Sci. Eng. C. 2014;34:130–139.10.1016/j.msec.2013.08.037
  • Lee LY, Wu SC, Fu SS, Zeng SY, Leong WS, Tan LP. Biodegradable elastomer for soft tissue engineering. Eur. Polym. J. 2009;45:3249–3256.10.1016/j.eurpolymj.2009.07.016
  • Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone. 2010;46:386–395.10.1016/j.bone.2009.09.031
  • Kellomäki M, Niiranen H, Puumanen K, Ashammakhi N, Waris T, Törmälä P. Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials. 2000;21:2495–2505.10.1016/S0142-9612(00)00117-4
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798.10.1016/j.progpolymsci.2007.05.017
  • Ma PX. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 2008;60:184–198.10.1016/j.addr.2007.08.041
  • Cohen S, Baño MC, Cima LG, Allcock HR, Vacanti JP, Vacanti CA, Langer R. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin. Mater. 1993;13:3–10.10.1016/0267-6605(93)90082-I
  • Mou ZL, Zhao LJ, Zhang QA, Zhang J, Zhang ZQ. Preparation of porous PLGA/HA/collagen scaffolds with supercritical CO2 and application in osteoblast cell culture. J. Supercrit. Fluids. 2011;58:398–406.
  • Ma Z, Gao C, Ji J, Shen J. Protein immobilization on the surface of poly-L-lactic acid films for improvement of cellular interactions. Eur. Polym. J. 2002;38:2279–2284.10.1016/S0014-3057(02)00119-2
  • Domingos M, Intranuovo F, Gloria A, Gristina R, Ambrosio L, Bártolo PJ, Favia P. Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomater. 2013;9:5997–6005.10.1016/j.actbio.2012.12.031
  • Lim JI, Kim SI, Kim SH. Lotus-leaf-like structured heparin-conjugated poly(L-lactide-co-epsilon-caprolactone) as a blood compatible material. Colloids Surf., B. 2013;103:463–467.10.1016/j.colsurfb.2012.11.016
  • Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R. 2014;80:1–36.10.1016/j.mser.2014.04.001
  • Choong C, Griffiths JP, Moloney MG, Triffitt J, Swallow D. Direct introduction of phosphonate by the surface modification of polymers enhances biocompatibility. React. Funct. Polym. 2009;69:77–85.10.1016/j.reactfunctpolym.2008.11.003
  • Jana S, Tefft BJ, Spoon DB, Simari RD. Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 2014;10:2877–2893.10.1016/j.actbio.2014.03.014
  • Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 2007;59:207–233.10.1016/j.addr.2007.03.012
  • Lu Q, Hu K, Feng QL, Cui F. Growth of fibroblast and vascular smooth muscle cells in fibroin/collagen scaffold. Mater. Sci. Eng. C. 2009;29:2239–2245.10.1016/j.msec.2009.05.014
  • Thein-Han WW, Misra RD. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5:1182–1197.
  • Ji C, Shi J. Thermal-crosslinked porous chitosan scaffolds for soft tissue engineering applications. Mater. Sci. Eng. C. 2013;33:3780–3785.10.1016/j.msec.2013.05.010
  • Baldino L, Cardea S, De Marco I, Reverchon E. Chitosan scaffolds formation by a supercritical freeze extraction process. J. Supercrit. Fluids. 2014;90:27–34.
  • Shirosaki Y, Okayama T, Tsuru K, Hayakawa S, Osaka A. Synthesis and cytocompatibility of porous chitosan-silicate hybrids for tissue engineering scaffold application. Chem. Eng. J. 2008;137:122–128.10.1016/j.cej.2007.10.012
  • Yao CK, Liao JD, Chung CW, Sung WI, Chang NJ. Porous chitosan scaffold cross-linked by chemical and natural procedure applied to investigate cell regeneration. Appl. Surf. Sci. 2012;262:218–221.10.1016/j.apsusc.2012.05.128
  • Li J, Zivanovic S, Davidson PM, Kit K. Characterization and comparison of chitosan/PVP and chitosan/PEO blend films. Carbohydr. Polym. 2010;79:786–791.10.1016/j.carbpol.2009.09.028
  • Lim JI, Kim GW, Na JS, Noh IS, Son YS, Kim CH. A novel method for porous chitosan scaffold. Key Eng. Mater. 2007;65:342–343.
  • Kim MS, Park SJ, Gu BK, Kim CH. Inter-connecting pores of chitosan scaffold with basic fibroblast growth factor modulate biological activity on human mesenchymal stem cells. Carbohydr. Polym. 2012;87:2683–2689.10.1016/j.carbpol.2011.11.060
  • Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491.10.1016/j.biomaterials.2005.02.002
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63.10.1016/0022-1759(83)90303-4
  • Cao Y, Wang C, Yang S, Li Y, Yang X, Zhang C, Ma J, Xu J. Fluorescence staining and confocal laser scanning microscopy study of hydrogen-bonded poly (vinylpyrrolidone)/poly (acrylic acid) film. Colloids Surf., A. 2011;392:83–87.10.1016/j.colsurfa.2011.09.037
  • Yuan Q, Su C, Cao Y, Wu K, Xu J, Yang S. Rhodamine loading and releasing behavior of hydrogen-bonded poly(vinylpyrrolidone)/poly(acrylic acid) film. Colloids Surf., A. 2014;456:153–159.10.1016/j.colsurfa.2014.05.030
  • Hollister SJ, Maddox RD, Taboas JM. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials. 2002;23:4095–4103.10.1016/S0142-9612(02)00148-5
  • Mehdizadeh H, Sumo S, Bayrak ES, Brey EM, Cinar A. Three-dimensional modeling of angiogenesis in porous biomaterials caffolds. Biomaterials. 2013;34:2875–2887.10.1016/j.biomaterials.2012.12.047

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.