339
Views
21
CrossRef citations to date
0
Altmetric
Articles

Fluorescent cadmium telluride quantum dots embedded chitosan nanoparticles: a stable, biocompatible preparation for bio-imaging

, , , , &
Pages 42-56 | Received 17 Aug 2014, Accepted 27 Oct 2014, Published online: 20 Nov 2014

References

  • Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dye. Angew. Chem. Int. Ed. 2008;47:5465–5469.10.1002/anie.v47:29
  • Alivisatos P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004;22:47–52.10.1038/nbt927
  • Dubertret B, Skourides P, Norris DJ, Nioreaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298:1759–1762.10.1126/science.1077194
  • Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 2013;6:143–162.10.1146/annurev-anchem-060908-155136
  • Ruan Y, Yu W, Cheng F, Zhang X, Rao T, Xia Y, Larre S. Comparison of quantum-dots- and fluorescein-isothiocyanate-based technology for detecting prostate-specific antigen expression in human prostate cancer. IET Nanobiotechnol. 2011;5:47–51.
  • Murphy CJ. Optical sensing with quantum dots. Anal. Chem. 2002;74:520A–526A.
  • Chang SQ, Kang B, Dai YD, Zhang HX, Chen D. One-step fabrication of biocompatible chitosan coated ZnS and ZnS:Mn2+ quantum dots via a γ-gradiation route. Nanoscale Res. Lett. 2011;6:591–597.
  • Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004;22:969–976.10.1038/nbt994
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005;113:823–839.10.1289/ehp.7339
  • Chitkara M, Singh K, Sandhu IS, Bhatti HS. Photo-catalytic activity of Zn1-x Mnx S nanocrystals synthesized by wet chemical technique. Nanoscale Res. Lett. 2011;6:438–442.
  • Kale S, Kale A, Gholap H, Rana A, Desai R, Banpurkar A, Ogale S, Shastry P. Quantum dot bio-conjugate: as a western blot probe for highly sensitive detection of cellular proteins. J. Nanopart. Res. 2012;14:732–736.10.1007/s11051-012-0732-9
  • Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B. 2001;105:8861–8871.10.1021/jp0105488
  • Nie QL, Tan WB, Zhang Y. Synthesis and characterization of monodisperse chitosan nanoparticles with embedded quantum dots. Nanotechnology. 2006;17:140–144.10.1088/0957-4484/17/1/022
  • Wang Y, Chen L. Quantum dots, lighting up the research and development of nanomedicine. Nanomed. Nanotechnol. Biol. Med. 2011;7:385–402.10.1016/j.nano.2010.12.006
  • Song KK, Lee S. Highly luminescent (ZnSe)ZnS core-shell quantum dots for blue to UV emission: synthesis and characterization. Curr. Appl. Phys. 2001;1:169–173.10.1016/S1567-1739(01)00012-8
  • Zhang Y, Yang J. Design strategies for fluorescent biodegradable polymeric biomaterials. J. Mater. Chem. B. 2012;1:132–148.10.1039/c2tb00071g
  • He Z, Zhu H, Zhou P. Microwave-assisted aqueous synthesis of highly luminescent carboxymethyl chitosan-coated CdTe/CdS quantum dots as fluorescent probe for live cell imaging. J. Fluorescence. 2012;22:193–199.10.1007/s10895-011-0946-8
  • Tan L, Wan A, Li H, Lu Q. Novel quantum dots–carboxymethyl chitosan nanocomposite nitric oxide donors capable of detecting release of nitric oxide in situ. Acta Biomater. 2012;8:3744–3753.10.1016/j.actbio.2012.06.008
  • Hezinger AFE, Teßmar J, Göpferich A. Polymer coating of quantum dots – a powerful tool toward diagnostics and sensorics. Eur. J. Pharm. Biopharm. 2008;68:138–152.10.1016/j.ejpb.2007.05.013
  • Ramanery FP, Mansur AAP, Mansur HS. One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates. Nanoscale Res. Lett. 2013;8:512–524.10.1186/1556-276X-8-512
  • Mansur HS, Mansur AAP, Curti E, De Almeida MV. Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J. Mater. Chem. 2013;1:1696–1711.10.1039/c3tb00498h
  • Nehilla BJ, Allen PG, Desai TA. Surfactant-free, drug-quantum-dot co loaded poly(lactide-co-glycolide) nanoparticles: towards multifunctional nanoparticles. ACS Nano. 2008;2:538–544.10.1021/nn700281b
  • Kim JS, Cho KJ, Tran TH, Nurunnabi M, Moon TH, Hong SM, Lee YKJ. In vivo NIR imaging with CdTe/CdSe quantum dots entrapped in PLGA nanospheres. J. Colloid Interface Sci. 2011;353:363–371.10.1016/j.jcis.2010.08.053
  • Kim BYS, Jiang W, Oreopoulos J, Yip CM, Rutka JT, Chan WCW. Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Lett. 2008;8:3887–3892.10.1021/nl802311t
  • Lin Y, Zhang L, Yao W, Qian H, Ding D, Wu W, Jiang X. Water-soluble chitosan-Quantum Dot hybrid nanospheres toward bioimaging and biolabeling. Appl. Mater. Interfaces. 2011;3:995–1002.10.1021/am100982p
  • Tan WB, Huang N, Zhang Y. Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications. J. Colloid Interface Sci. 2007;310:464–470.10.1016/j.jcis.2007.01.083
  • Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials. 2007;28:1565–1571.10.1016/j.biomaterials.2006.11.018
  • Li L, Chen D, Zhang Y, Deng Z, Ren X, Meng X, Tang F, Ren J, Zhang L. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology. 2007;18:405102–405107.10.1088/0957-4484/18/40/405102
  • Nishi C, Nakajima N, Ikada Y. In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J. Biomed. Mater. Res. 1995;29:829–834.10.1002/(ISSN)1097-4636
  • Calderon L, Collin E, Velasco-Bayon D, Murphy M, O’Halloran D, Pandit A. Type II collagen-hyaluronan hydrogel – a step towards a scaffold for intervertebral disc tissue engineering. Eur. Cells Mater. 2010;20:134–148.
  • Doiphode N, Ghormade V, Deshpande MV. Chitosan production using a dimorphic zygomycetous fungus Benjaminiella poitrasii: role of chitin deacetylase for increased deacetylation. Chitin J. 2009;5:19–26.
  • Ghormade V, Deshpande MV, Paknikar KM. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011;29:792–803.10.1016/j.biotechadv.2011.06.007
  • Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm. Res. 2004;21:344–353.10.1023/B:PHAM.0000016249.52831.a5
  • Hejazi R, Amiji M. Chitosan based gastrointestinal delivery systems. J. Control. Release. 2003;89:151–165.10.1016/S0168-3659(03)00126-3
  • Ma ZS, Lim LY. Uptake of chitosan and associated insulin in the Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm. Res. 2003;20:1812–1819.10.1023/B:PHAM.0000003379.76417.3e
  • Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 2000;50:147–160.10.1016/S0939-6411(00)00084-9
  • Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier – systematic examination of fabrication conditions for efficient loading and release. Colloids Surf., B. 2007;59:24–34.10.1016/j.colsurfb.2007.04.009
  • Freier T, Koh HS, Kazazian K, Shoichet MS. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26:5872–5878.10.1016/j.biomaterials.2005.02.033
  • Escott GM, Adams DJ. Chitinase activity in human serum and leukocytes. Infect. Immun. 1995;63:4770–4773.
  • Nahar P, Ghormade V, Deshpande MV. The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J. Invertebr. Pathol. 2004;85:80–88.10.1016/j.jip.2003.11.006
  • Pan J, Feng S. Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials. 2009;30:1176–1183.10.1016/j.biomaterials.2008.10.039
  • Weaver J, Zakeri R, Aouadi S, Kohli P. Synthesis and characterization of quantum dot–polymer composites. J. Mater. Chem. 2009;19:3198–3206.10.1039/b820204d
  • Van de Velde K, Kiekens P. Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state C NMR. Carbohydr. Polym. 2004;58:409–416.10.1016/j.carbpol.2004.08.004
  • Chung C, Lee M. Self-assembled monolayers of mercaptoacetic acid on Ag powder: characterization by FT-IR diffuse reflection spectroscopy. Bull. Korean Chem. Soc. 2004;25:1461–1462.
  • Keawchaoon L, Yoksan R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf., B. 2011;84:163–171.10.1016/j.colsurfb.2010.12.031
  • Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr. Polym. 2013;95:50–56.10.1016/j.carbpol.2013.02.031
  • Prasad BR, Nikolskaya N, Connolly D, Smith TJ, Byrne SJ, Gerard VA, Gun'ko YK, Rochev Y. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use. J. Nanobiotechnol. 2010;8:7–22.10.1186/1477-3155-8-7
  • Liu Y, Fei X, Wang Y, Wang J. Preparation of CdTe/CdS core-shell quantum dots modified by chitosan and its spectral characteristics. Chalcogenide Lett. 2011;8:111–115.
  • Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–18.10.1021/nl0347334
  • Cho Y, Shi R, Ben Borgens RB. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J. Biol. Eng. 2010;4:2–11.10.1186/1754-1611-4-2
  • Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release. 2001;73:255–267.10.1016/S0168-3659(01)00294-2
  • Son YJ, Jang JS, Cho YW, Chung H, Park RW, Kwon IC, Kim IS, Park JY, Seo SB, Park CR, Jeong SY. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J. Control. Release. 2003;91:135–145.10.1016/S0168-3659(03)00231-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.