220
Views
12
CrossRef citations to date
0
Altmetric
Articles

Tetronic®-based composite hydrogel scaffolds seeded with rat bladder smooth muscle cells for urinary bladder tissue engineering applications

, , &
Pages 196-210 | Received 24 Sep 2014, Accepted 16 Nov 2014, Published online: 13 Dec 2014

References

  • Chun YW, Lim H, Webster TJ, Haberstroh KM. Nanostructured bladder tissue replacements. Wiley Interdisciplinary Rev. Nanomed. Nanobiotechnol. 2011;3:134–145.
  • Sivaraman S, Nagatomi J. Polymer-based scaffolds for urinary bladder tissue engineering. In: Shalaby SW, Burg KJ, Shalaby W, editors. Polymers for vascular and urogenital applications. Boca Raton (FL): CRC Press; 2012. p. 175–200.10.1201/CRCADVPOLBIO
  • Thomas DF. Surgical treatment of urinary incontinence. Arch. Dis. Childhood. 1997;76:377–380.10.1136/adc.76.4.377
  • Turner AM, Subramaniam R, Thomas DFM, Southgate J. Tissue engineering using ceramics and polymers. Bladder Tissue Eng. 2007;1:445–459.10.1533/9781845693817.2.445
  • Schwenke-konig PSA, Hage JJ, Kon M. Comparison of rectus abdominis muscle and musculoperitoneal flap in closure of urinary bladder defects in a rat model. Eur. J. Plast. Surg. 2004;27:233–237.10.1007/s00238-004-0672-4
  • Iijima K, Igawa Y, Imamura T, Moriizumi T, Nikaido T, Konishi I, Nishizawa O. Transplantation of preserved human amniotic membrane for bladder augmentation in rats. Tissue Eng. 2007;13:513–524.10.1089/ten.2006.0170
  • Eberli D, Filho LF, Atala A, Yoo JJ. Composite scaffolds for the engineering of hollow organs and tissues. Methods. 2009;47:109–115.10.1016/j.ymeth.2008.10.014
  • Badylak SF, Lantz GC, Coffey A, Geddes LA. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Urol. 1989;155:2098–2104.
  • Zhang Y, Kropp BP, Lin HK, Cowan R, Cheng EY. Bladder regeneration with cell-seeded small intestinal submucosa. Tissue Eng. 2004;10:181–187.10.1089/107632704322791835
  • Zhang Y, Frimberger D, Cheng EY, Lin HK, Kropp BP. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int. 2006;98:1100–1105.10.1111/bju.2006.98.issue-5
  • Mauney JR, Cannon GM, Lovett ML, Gong EM, Di Vizio D, Gomez P III, Kaplan DL, Adama RM, Estrada CR Jr. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation. Biomaterials. 2011;32:808–818.10.1016/j.biomaterials.2010.09.051
  • Annor A, Tang M, Pui C, Ebersole G, Frisella M, Matthews B, Deeken CR. Effect of enzymatic degradation on the mechanical properties of biological scaffold materials. Surg. Endosc. 2012;26:2767–2778.10.1007/s00464-012-2277-5
  • Lovett ML, Cannizzaro CM, Vunjak-Novakovic G, Kaplan DL. Gel spinning of silk tubes for tissue engineering. Biomaterials. 2008;29:4650–4657.10.1016/j.biomaterials.2008.08.025
  • Dahms SE, Piechota HJ, Dahiya R, Lue TF, Tanagho EA. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br. J. Urol. 1998;82:411–419.10.1046/j.1464-410X.1998.00748.x
  • Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. The Lancet. 2006;367:1241–1246.10.1016/S0140-6736(06)68438-9
  • Joseph DB, Borer JG, De Filippo RE, Hodges SJ, McLorie GA. Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with Spina Bifida. J. Urol. 2014;191:1389–1395.
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337–4351.
  • DeKosky BJ, Detamore MS, Dormer NH, Gehrke SH, Ingavle GC, Lomakin J, Roatch CH. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng. Part C. 2010;16:1533–1542.10.1089/ten.tec.2009.0761
  • Park Y, Lutolf M, Hubbell J, Hunziker E, Wong M. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng. 2004;10:515–522.10.1089/107632704323061870
  • Adelöw C, Segura T, Hubbell JA, Frey P. The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials. 2008;29:314–326.10.1016/j.biomaterials.2007.09.036
  • Brandl FP, Seitz AK, Teßmar JKV, Blunk T, Göpferich AM. Enzymatically degradable poly(ethylene glycol) based hydrogels for adipose tissue engineering. Biomaterials. 2010;31:3957–3966.10.1016/j.biomaterials.2010.01.128
  • Sosnik A, Sefton MA. Semi-synthetic collagen/poloxamine matrices for tissue engineering. Biomaterials. 2005;26:7425–7435.10.1016/j.biomaterials.2005.05.086
  • Kutty JK, Cho E, Soo Lee J, Vyavahare NR, Webb K. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks. Biomaterials. 2007;28:4928–4938.10.1016/j.biomaterials.2007.08.007
  • Roby T, Olsen S, Nagatomi J. Effect of sustained tension on bladder smooth muscle cells in three-dimensional culture. Ann. Biomed. Eng. 2008;36:1744–1751.10.1007/s10439-008-9545-5
  • Cho E, Lee JS, Webb K. Formulation and characterization of poloxamine-based hydrogels as tissue sealants. Acta Biomater. 2012;8:2223–2232.
  • Blumenkrantz N, Asboe-Hansen G. An assay for hydroxyproline and proline on one sample and a simplified method for hydroxyproline. Anal. Biochem. 1975;63:331–340.10.1016/0003-2697(75)90354-1
  • Cho E, Lee JS, Webb K. Formulation and characterization of poloxamine-based hydrogels as tissue sealants. Acta Biomater. 2012;8:2223–2232.10.1016/j.actbio.2012.03.003
  • Hiremath J, Vishalakshi B. Effect of Crosslinking on swelling behaviour of IPN hydrogels of Guar Gum & Polyacrylamide. Der Pharma Chemica. 2012;4:946–955.
  • Suri S, Schmidt CE. Photopatterned collagen–hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomater. 2009;5:2385–2397.10.1016/j.actbio.2009.05.004
  • Donati I, Paoletti S. Material properties of alginates. In: Rehm B, editor. Alginates: biology and applications: biology and applications. Heidelburg: Springer; 2009. p. 40–41.
  • Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang S. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. J. Biomed. Mater. Res A. 2010;95A:673–681.10.1002/jbm.a.v95a:3
  • Shi Y, Vesely I. Characterization of statically loaded tissue-engineered mitral valve chordae tendineae. J. Biomed. Mater. Res. 2004;69A:26–39.10.1002/(ISSN)1097-4636
  • Engelhardt EM, Stegberg E, Brown RA, Hubbell JA, Wurm FM, Adam M, Frey P. Compressed collagen gel: a novel scaffold for human bladder cells. J. Tissue Eng. Regen. Med. 2010;4:123–130.10.1002/term.v4:2
  • Venkataraman L, Ramamurthi A. Induced elastic matrix deposition within three-dimensional collagen scaffolds. Tissue Eng. Part A. 2011;17:2879–2889.10.1089/ten.tea.2010.0749
  • Stevenson K, Kucich U, Whitbeck C, Levin R, Howard P. Functional changes in bladder tissue from type III collagen-deficient mice. Mol. Cell Biochem. 2006;283:107–114.10.1007/s11010-006-2388-1
  • Nagatomi J, Gloeckner DC, Chancellor M, deGroat W, Sacks M. Changes in the biaxial viscoelastic response of the urinary bladder following spinal cord injury. Ann. Biomed. Eng. 2004;32:1409–1419.10.1114/B:ABME.0000042228.89106.48
  • Ross JJ, Tranquillo RT. \ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol. 2003;22:477–490.10.1016/S0945-053X(03)00078-7
  • Berglund JD, Mohseni MM, Nerem RM, Sambanis A. A biological hybrid model for collagen-based tissue engineered vascular constructs. Biomaterials. 2003;24:1241–1254.10.1016/S0142-9612(02)00506-9
  • Grassl ED, Oegema TR, Tranquillo RT. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. 2003;66A:550–561.10.1002/(ISSN)1097-4636
  • Girton TS, Oegema TR, Tranquillo RT. Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering. J. Biomed. Mater. Res. 1999;46:87–92.10.1002/(ISSN)1097-4636

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.