275
Views
8
CrossRef citations to date
0
Altmetric
Articles

Preparation and preliminary in vitro evaluation of a bFGF-releasing heparin-conjugated poly(ε-caprolactone) membrane for guided bone regeneration

, , , , , & show all
Pages 600-616 | Received 02 Feb 2015, Accepted 05 May 2015, Published online: 12 Jun 2015

References

  • Bottino MC, Thomas V, Schmidt G, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration – a materials perspective. Dent. Mater. 2012;28:703–721.10.1016/j.dental.2012.04.022
  • Scantlebury T, Ambruster J. The development of guided regeneration: making the impossible possible and the unpredictable predictable. J. Evidence Based Dent. Pract. 2012;12:101–117.10.1016/S1532-3382(12)70022-2
  • Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials. 2005;26:4139–4147.10.1016/j.biomaterials.2004.09.014
  • Yang F, Both SK, Yang X, et al. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater. 2009;5:3295–3304.10.1016/j.actbio.2009.05.023
  • Kim TH, Oh SH, Na SY, et al. Effect of biological/physical stimulation on guided bone regeneration through asymmetrically porous membrane. J. Biomed. Mater. Res. A. 2012;100:1512–1520.10.1002/jbm.a.v100a.6
  • Lee YJ, Lee JH, Cho HJ, et al. Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Biomaterials. 2013;34:5059–5069.10.1016/j.biomaterials.2013.03.051
  • Yamano S, Haku K, Yamanaka T, et al. The effect of a bioactive collagen membrane releasing PDGF or GDF-5 on bone regeneration. Biomaterials. 2014;35:2446–2453.10.1016/j.biomaterials.2013.12.006
  • Wang Y, Shi R, Gong P, et al. Bioelectric effect of a chitosan bioelectret membrane on bone regeneration in rabbit cranial defects. J. Bioact. Compat. Polym. 2012;27:122–132.10.1177/0883911512436773
  • Kasaj A, Reichert C, Gotz H, et al. In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration. Head Face Med. 2008;4:22.10.1186/1746-160X-4-22
  • Behring J, Junker R, Walboomers XF, et al. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008;96:1–11.10.1007/s10266-008-0087-y
  • Ji W, Yang F, Ma J, et al. Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials. 2013;34:735–745.10.1016/j.biomaterials.2012.10.016
  • Cipitria A, Reichert JC, Epari DR, et al. Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials. 2013;34:9960–9968.10.1016/j.biomaterials.2013.09.011
  • Ye L, Wu X, MuQ, et al. Heparin-conjugated PCL scaffolds fabricated by electrospinning and loaded with fibroblast growth factor 2. J. Biomater. Sci., Polym. Ed. 2011;22:389–406.
  • Singh S, Wu BM, Dunn JC. The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin. Biomaterials. 2011;32:2059–2069.10.1016/j.biomaterials.2010.11.038
  • Vaquette C, Ivanovski S, Hamlet SM, et al. Effect of culture conditions and calcium phosphate coating on ectopic bone formation. Biomaterials. 2013;34:5538–5551.10.1016/j.biomaterials.2013.03.088
  • Lee JW, Kang KS, Lee SH, et al. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials. 2011;32:744–752.10.1016/j.biomaterials.2010.09.035
  • Kaigler D, Silva EA, Mooney DJ. Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J. Periodontol. 2013;84:230–238.10.1902/jop.2012.110684
  • Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface. 2011;8:153–170.10.1098/rsif.2010.0223
  • Yun YR, Won JE, Jeon E, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng. 2010;2010:1–18.10.4061/2010/218142
  • Schwarz F, Ferrari D, Podolsky L, et al. Initial pattern of angiogenesis and bone formation following lateral ridge augmentation using rhPDGF and guided bone regeneration: an immunohistochemical study in dogs. Clin. Oral Implants Res. 2010;21:90–99.10.1111/clr.2010.21.issue-1
  • Talwar BS. A focus on soft tissue in dental implantology. J. Indian Prosthodont. Soc. 2012;12:137–142.10.1007/s13191-012-0133-x
  • Jansen RG, van Kuppevelt TH, Daamen WF, et al. FGF-2-loaded collagen scaffolds attract cells and blood vessels in rat oral mucosa. J. Oral Pathol. Med. 2009;38:630–638.10.1111/jop.2009.38.issue-8
  • Wang L, Zou D, Zhang S, et al. Repair of bone defects around dental implants with bone morphogenetic protein/fibroblast growth factor-loaded porous calcium phosphate cement: a pilot study in a canine model. Clin. Oral Implants Res. 2011;22:173–181.10.1111/clr.2011.22.issue-2
  • Wang H, Zou Q, Boerman OC, et al. Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. J. Control. Release. 2013;166:172–181.10.1016/j.jconrel.2012.12.015
  • Fei Y, Hurley MM. Role of fibroblast growth factor 2 and wnt signaling in anabolic effects of parathyroid hormone on bone formation. J. Cell. Physiol. 2012;227:3539–3545.10.1002/jcp.v227.11
  • Hong KS, Kim EC, Bang SH, et al. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J. Biomed. Mater. Res. A. 2010;94:1187–1194.
  • Montero RB, Vial X, Nguyen DT, et al. bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis. Acta Biomater. 2012;8:1778–1791.10.1016/j.actbio.2011.12.008
  • Chung HJ, Kim HK, Yoon JJ, et al. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharm. Res. 2006;23:1835–1841.10.1007/s11095-006-9039-9
  • Tabata Y, Yamada K, Miyamoto S, et al. Bone regeneration by basic fibroblast growth factor complexed with biodegradable hydrogels. Biomaterials. 1998;19:807–815.10.1016/S0142-9612(98)00233-6
  • Huang S, Deng T, Wu H, et al. Wound dressings containing bFGF-impregnated microspheres. J. Microencapsul. 2006;23:277–290.10.1080/02652040500435170
  • Lee J, Yoo JJ, Atala A, et al. The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration. Biomaterials. 2012;33:6709–6720.10.1016/j.biomaterials.2012.06.017
  • Shen H, Hu X, Yang F, et al. Cell affinity for bFGF immobilized heparin-containing poly(lactide-co-glycolide) scaffolds. Biomaterials. 2011;32:3404–3412.10.1016/j.biomaterials.2011.01.037
  • Zhao L, Liu L, Wu Z, et al. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. Biomaterials. 2012;33:2629–2641.10.1016/j.biomaterials.2011.12.024
  • An N, Rausch-fan X, Wieland M, et al. Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces. Dent. Mater. 2012;28:1207–1214.10.1016/j.dental.2012.08.007
  • Jeon O, Song SJ, Kang SW, et al. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(l-lactic-co-glycolic acid) scaffold. Biomaterials. 2007;28:2763–2771.10.1016/j.biomaterials.2007.02.023
  • Padalhin AR, Thuy Ba Linh N, Ki Min Y, et al. Evaluation of the cytocompatibility hemocompatibility in vivo bone tissue regenerating capability of different PCL blends. J. Biomater. Sci., Polym. Ed. 2014;25:487–503.
  • Sato M, Ishihara M, Ishihara M, et al. Effects of growth factors on heparin-carrying polystyrene-coated atelocollagen scaffold for articular cartilage tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2007;83:181–188.10.1002/(ISSN)1552-4981
  • Sun H, Wang X, Hu X, et al. Promotion of angiogenesis by sustained release of rhGM-CSF from heparinized collagen/chitosan scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 2011;100:788–798.
  • Teixeira S, Yang L, Dijkstra PJ, et al. Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering. J. Mater. Sci. Mater. Med. 2010;21:2385–2392.10.1007/s10856-010-4097-2
  • Kim SE, Song SH, Yun YP, et al. The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function. Biomaterials. 2011;32:366–373.10.1016/j.biomaterials.2010.09.008
  • Brouwer KM, Wijnen RM, Reijnen D, et al. Heparinized collagen scaffolds with and without growth factors for the repair of diaphragmatic hernia: construction and in vivo evaluation. Organogenesis. 2013;9:161–167.10.4161/org.25587
  • Kim BS, Yang SS, Lee J. A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2014;102:943–951.10.1002/jbm.b.v102.5
  • Li H, Tao S, Yan Y, et al. Degradability and cytocompatibility of tricalcium phosphate/poly(amino acid) composite as bone tissue implants in orthopaedic surgery. J. Biomater. Sci., Polym. Ed. 2014;25:1194–1210.10.1080/09205063.2014.926001
  • Li J, Zuo Y, Man Y, et al. Fabrication and biocompatibility of an antimicrobial composite membrane with an asymmetric porous structure. J. Biomater. Sci., Polym. Ed. 2012;23:81–96.10.1163/092050610X543159
  • Li J, Man Y, Zuo Y, et al. In vitro and in vivo evaluation of a nHA/PA66 composite membrane for guided bone regeneration, J. Biomater. Sci., Polym. Ed. 2011;22:263–275.
  • Ye L, Wu X, Duan HY, et al. The in vitro and in vivo biocompatibility evaluation of heparin-poly(ε-caprolactone) conjugate for vascular tissue engineering scaffolds. J. Biomed. Mater. Res. A. 2012;100:3251–3258.10.1002/jbm.a.34270
  • Tabata Y, Yamada K, Miyamoto S, et al. Bone regeneration by basic fibroblast growth factor complexed with biodegradable hydrogels. Biomaterials. 1998;19:807–815.10.1016/S0142-9612(98)00233-6
  • Presta M, Dell’Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16:159–178.
  • Guo X, Elliott CG, Li Z, et al. Creating 3D angiogenic growth factor gradients in fibrous constructs to guide fast angiogenesis. Biomacromolecules. 2012;13:3262–3271.10.1021/bm301029a
  • Lee JH, Lee YJ, Cho HJ, et al. The incorporation of bFGF mediated by heparin into PCL/gelatin composite fiber meshes for guided bone regeneration. Drug Deliv. Transl. Res. 2015;5:146–159.10.1007/s13346-013-0154-y
  • Gao Y, Zhu S, Luo E, et al. Basic fibroblast growth factor suspended in Matrigel improves titanium implant fixation in ovariectomized rats. J. Control. Release. 2009;139:15–21.10.1016/j.jconrel.2009.05.032
  • Jeong I, Yu HS, Kim MK, et al. FGF2-adsorbed macroporous hydroxyapatite bone granules stimulate in vitro osteoblastic gene expression and differentiation. J. Mater. Sci. Mater. Med. 2010;21:1335–1342.10.1007/s10856-009-3971-2
  • Oh SA, Lee HY, Lee JH, et al. Collagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiation. Tissue Eng. Part A. 2012;18:1087–1100.10.1089/ten.tea.2011.0360
  • Lisignoli G, Zini N, Remiddi G, et al. Basic fibroblast growth factor enhances in vitro mineralization of rat bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold. Biomaterials. 2001;22:2095–2105.10.1016/S0142-9612(00)00398-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.