331
Views
14
CrossRef citations to date
0
Altmetric
Articles

Potential of biocompatible regenerated silk fibroin/sodium N-lauroyl sarcosinate hydrogels

, , , , &
Pages 780-795 | Received 12 Apr 2015, Accepted 02 Jun 2015, Published online: 30 Jun 2015

References

  • Numata K, Yamazaki S, Naga N. Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles. Biomacromolecules. 2012;13:1383–1389.
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337–4351.
  • Yodmuang S, McNamara SL, Nover AB, et al. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 2015;11:27–36.
  • Das S, Pati F, Choi YJ, et al. Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater. 2015;11:233–246.
  • Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011;6:1612–1631.
  • Gasperini L, Mano JF, Reis RL. Natural polymers for the microencapsulation of cells. J R Soc. Interface. 2014;11:20140817.
  • Numata K, Katashima T, Sakai T. State of water, molecular structure, and cytotoxicity of silk hydrogels. Biomacromolecules. 2011;12:2137–2144.
  • Amin S, Rajabnezhad S, Kohli K. Hydrogels as potential drug delivery systems. Sci. Res. Essays. 2009;4:1175–1183.
  • Balakrishnan B, Banerjee R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev. 2011;111:4453–4474.
  • Lin CC, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Delivery Rev. 2006;58:1379–1408.
  • Kundu B, Kurland NE, Bano S, et al. Silk proteins for biomedical applications: bioengineering perspectives. Prog. Polym. Sci. 2014;39:251–267.
  • Omenetto FG, Kaplan DL. Silk biomaterials. Biomaterials. 2010;31:6119.
  • Li C, Luo T, Zheng Z, Murphy AR, Wang X, Kaplan DL. Curcumin-functionalized silk materials for enhancing adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Biomater. 2015;11:222–232.
  • Yucel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophys. J. 2009;97:2044–2050.
  • Zhang W, Wang X, Wang S, et al. The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials. 2011;32:9415–9424.
  • Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL. Structure and properties of silk hydrogels. Biomacromolecules. 2004;5:786–792.
  • Nagarkar S, Nicolai T, Chassenieux C, Lele A. Structure and gelation mechanism of silk hydrogels. Phys. Chem. Chem. Phys. 2010;12:3834–3844.
  • Wu X, Hou J, Li M, Wang J, Kaplan DL, Lu S. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomater. 2012;8:2185–2192.
  • Sun S, Zhang F, Zhang S, Xing T, Lu S. Antimicrobial silk fibroin hydrogel instantaneously induced by cationic surfactant. Biotechnology. 2013;12:128–134.
  • Ghosh S, Dey J. Interaction of sodium N-lauroylsarcosinate with N-alkylpyridinium chloride surfactants: spontaneous formation of pH-responsive, stable vesicles in aqueous mixtures. J. Colloid Interface Sci. 2011;358:208–216.
  • Gad EAM, El-Sukkary MMA, Ismail DA. Surface and thermodynamic parameters of sodium N-acyl sarcosinate surfactant solutions. J. Am. Oil Chem. Soc. 1997;74:43–47.
  • Wang J, Wei Y, Yi H, Liu Z, Sun D, Zhao H. Cytocompatibility of a silk fibroin tubular scaffold. Mater. Sci. Eng., C. 2014;34:429–436.
  • Matsumoto A, Chen J, Collette AL, et al. Mechanisms of silk fibroin sol-gel transitions. J. Phys. Chem. B. 2006;110:21630–21638.
  • Zhong T, Deng C, Gao Y, Chen M, Zuo B. Studies of in situ-forming hydrogels by blending PLA-PEG-PLA copolymer with silk fibroin solution. J. Biomed. Mater. Res. Part A. 2012;100:1983–1989.
  • Karakutuk I, Ak F, Okay O. Diepoxide-triggered conformational transition of silk fibroin: formation of hydrogels. Biomacromolecules. 2012;13:1122–1128.
  • Gil ES, Spontak RJ, Hudson SM. Effect of β-sheet crystals on the thermal and rheological behavior of protein based hydrogels derived from gelatin and silk fibroin. Macromol. Biosci. 2005;5:702–709.
  • Roehl D, Jelen P. Surface tension of whey and whey derivatives. J. Dairy Sci. 1988;71:3167–3172.
  • Silva SS, Popa EG, Gomes ME, et al. Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids. Acta Biomater. 2013;9:8972–8982.
  • Kim HH, Park JB, Kang MJ, Park YH. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid–dopamine conjugate. Int. J. Biol Macromol. 2014;70:516–522.
  • Hu X, Kaplan D, Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules. 2006;39:6161–6170.
  • Park CH, Jeong L, Cho D, et al. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel. Carbohydr. Polym. 2013;98:179–185.
  • Park CH, Jeong L, Cho D, Kwon OH, Park WH. Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement. Biomacromolecules. 2013;14:2629–2635.
  • Numata K, Yamazaki S, Katashima T, Chuah JA, Naga N, Sakai T. Silk pectin hydrogel with superior mechanical properties, biodegradability, and biocompatibility. Macromol. Biosci. 2014;14:799–806.
  • Ma Y, Feng Q, Bourrat X. A novel growth process of calcium carbonate crystals in silk fibroin hydrogel system. Mater. Sci. and Eng., C. 2013;33:2413–2420.
  • Huang Y, Zhang B, Xu G, Hao W. Swelling behaviours and mechanical properties of silk fibroin–polyurethane composite hydrogels. Compos. Sci. Tech. 2013;84:15–22.
  • Chen K, Zhang D, Dai Z, Wang S, Ge S. Research on the interstitial fluid load support characteristics and start-up friction mechanisms of PVA-HA-silk composite hydrogel. J. Bionic Eng. 2014;11:378–388.
  • Savadkoohi S, Shamsi K, Hoogenkamp H, Javadi A, Farahnaky A. Mechanical and gelling properties of comminuted sausages containing chicken MDM. J. Food Eng. 2013;117:255–262.
  • Szczesniak M, Pluta J. The effect of selected excipients on properties hydrogels on the basis Carbopol 934P. Polimery w Medycynie. 2012;43:29–34.
  • Hu X, Wang J, Huang H. Impacts of some macromolecules on the characteristics of hydrogels prepared from pineapple peel cellulose using ionic liquid. Cellulose. 2013;20:2923–2933.
  • Marycz K, Szarek D, Grzesiak J, Wrzeszcz K. Influence of modified alginate hydrogels on mesenchymal stem cells and olfactory bulb-derived glial cells cultures. Bio-med. Mater. and Eng. 2014;24:1625–1637.
  • Li P, Yin ZQ, Dou XQ, Zhou G, Feng CL. Convenient three-dimensional cell culture in supermolecular hydrogels. ACS Appl. Mater. & Interfaces. 2014;6:7948–7952.
  • Ziv K, Nuhn H, Ben-Haim Y, et al. A tunable silk–alginate hydrogel scaffold for stem cell culture and transplantation. Biomaterials. 2014;35:3736–3743.
  • Thiele J, Ma Y, Bruekers SMC, Ma S, Huck WTS. 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv. Mater. 2014;26:125–148.
  • Ribeiro M, de Moraes MA, Beppu MM, Monteiro FJ. The role of dialysis and freezing on structural conformation, thermal properties and morphology of silk fibroin hydrogels. Biomatter. 2014;4:e28536. doi:10.4161/biom.28536.
  • Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A. Genipin crosslinked gelatin–silk fibroin hydrogels for modulating the behaviour of pluripotent cells. J. Tissue Eng. and Regenerative Med. 2014;19. doi:10.1002/term.1868.
  • Munshi S, Twining RC, Dahl R. Alamar blue reagent interacts with cell-culture media giving different fluorescence over time: Potential for false positives. J. Pharmacol. and Toxicol. Methods. 2014;70:195–198.
  • Lanigan RS. Final report on the safety assessment of Cocoyl Sarcosine, Lauroyl Sarcosine, Myristoyl Sarcosine, Oleoyl Sarcosine, Stearoyl Sarcosine, Sodium Cocoyl Sarcosinate, Sodium Lauroyl Sarcosinate, Sodium Myristoyl Sarcosinate, Ammonium Cocoyl Sarcosinate, and Ammonium Lauroyl Sarcosinate. Int. J. Toxicol. 2000;20:1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.