1,718
Views
50
CrossRef citations to date
0
Altmetric
Review Article

Experimental approaches to vascularisation within tissue engineering constructs

, &
Pages 683-734 | Received 26 Mar 2015, Accepted 02 Jun 2015, Published online: 10 Jul 2015

References

  • Du Y, Ghodousi M, Qi H, Haas N, Xiao W, Khademhosseini A. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol. Bioeng. 2011;108:1693–1703.10.1002/bit.23102
  • Nomi M, Atala A, Coppi P De, Soker S. Principals of neovascularization for tissue engineering. Mol. Asp. Med. 2002;23:463–483.10.1016/S0098-2997(02)00008-0
  • Frerich B, Lindemann N, Kurtz-Hoffmann J, Oertel K. In vitro model of a vascular stroma for the engineering of vascularized tissues. Int. J. Oral Maxillofac. Surg. 2001;30:414–420.10.1054/ijom.2001.0130
  • Folkman J, D’Amore PA. Blood vessel formation: what is its molecular basis? Cell. 1996;87:1153–1155.10.1016/S0092-8674(00)81810-3
  • Risau W, Flamme I. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 1995;11:73–91.10.1146/annurev.cb.11.110195.000445
  • Soker S, Machado M, Atala A. Systems for therapeutic angiogenesis in tissue engineering. World J. Urol. 2000;18:10–18.10.1007/PL00007070
  • Slaaf D, Tangelder GJ, Reneman R. Physics of the microcirculation. In: Strackee J, Westerhof N, editor. Physics of Heart Circulation. Bristol: Institute of Physics; 1993. p. 383–416.
  • Ko HCH, Milthorpe BK, McFarland CD. Engineering thick tissues – the vascularisation problem. Eur. Cells Mater. 2007;14:1–18.
  • Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenes. Res. 2010;2:14.10.1186/2040-2384-2-14
  • Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 2004;95:343–353.10.1161/01.RES.0000137877.89448.78
  • Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109:625–637.10.1016/S0092-8674(02)00754-7
  • Spring H, Schuler T, Arnold B, Hammerling GJ, Ganss R. Chemokines direct endothelial progenitors into tumor neovessels. Proc. Natl. Acad. Sci. U.S.A. 2005;102:18111–18116.10.1073/pnas.0507158102
  • Jones CP, Pitchford SC, Lloyd CM, Rankin SM. CXCR2 mediates the recruitment of endothelial progenitor cells during allergic airways remodeling. Stem Cells. 2009;27:3074–3081.
  • Basire A, Sabatier F, Ravet S, et al. High urokinase expression contributes to the angiogenic properties of endothelial cells derived from circulating progenitors. Thromb. Haemost. 2006;95:678–688.
  • Huang PH, Chen YH, Wang CH, et al. Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2009;29:1179–1184.10.1161/ATVBAHA.109.189175
  • Hildbrand P, Cirulli V, Prinsen RC, et al. The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors. Blood. 2004;104:2010–2019.10.1182/blood-2003-12-4219
  • Wijelath ES, Rahman S, Murray J, Patel Y, Savidge G, Sobel M. Fibronectin promotes VEGF-induced CD34+ cell differentiation into endothelial cells. J. Vasc. Surg. 2004;39:655–660.10.1016/j.jvs.2003.10.042
  • Suh W, Kim KL, Kim J-M, et al. Transplantation of endothelial progenitor cells accelerates dermal wound healing with increased recruitment of monocytes/macrophages and neovascularization. Stem Cells. 2005;23:1571–1578.10.1634/stemcells.2004-0340
  • Urbich C, Aicher A, Heeschen C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell Cardiol. 2005;39:733–742.10.1016/j.yjmcc.2005.07.003
  • Marin-Padilla M. Early vascularization of the embryonic cerebral cortex: golgi and electron microscopic studies. J. Comp. Neurol. 1985;241:237–249.10.1002/(ISSN)1096-9861
  • Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 1977;14:53–65.10.1016/0026-2862(77)90141-8
  • Ruhrberg C, Gerhardt H, Golding M, et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 2002;16:2684–2698.10.1101/gad.242002
  • Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 2003;161:1163–1177.10.1083/jcb.200302047
  • Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell. 1999;4:915–924.10.1016/S1097-2765(00)80221-X
  • Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 1999;13:1055–1066.10.1101/gad.13.9.1055
  • Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.10.1126/science.277.5322.55
  • Kim I, Kim HG, Moon SO, et al. Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ. Res. 2000;86:952–959.10.1161/01.RES.86.9.952
  • Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell. 1998;92:391–400.10.1016/S0092-8674(00)80931-9
  • Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA. Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc. Natl. Acad Sci. U.S.A. 2000;97:2202–2207.10.1073/pnas.040378497
  • Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol. 2000;18:1135–1149.
  • Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–1180.10.1016/S0092-8674(00)81813-9
  • Carmeliet P. Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ. Res. 2000;87:176–178.10.1161/01.RES.87.3.176
  • Lindahl P, Boström H, Karlsson L, Hellström M, Kalén M, Betsholtz C. Role of platelet-derived growth factors in angiogenesis and alveogenesis. Curr. Top. Pathol. 1999;93:27–33.
  • Belperio JA, Keane MP, Arenberg DA, et al. CXC chemokines in angiogenesis. J. Leukoc. Biol. 2000;68:1–8.
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–257.10.1038/35025220
  • Suri C, McClain J, Thurston G, et al. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998;282:468–471. 10.1126/science.282.5388.468
  • Piskin E, Tuncel A, Denizli A, Ayhan H. Monosize microbeads based on polystyrene and their modified forms for some selected medical and biological applications. J. Biomater. Sci., Polym. Ed. 1994;5:451–471.10.1163/156856294X00149
  • Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng. Part B. 2008;14:61–86.10.1089/teb.2007.0150
  • Prabhakar V, Grinstaff MW, Alarcon J, Knors C, Solan AK, Niklason LE. Engineering porcine arteries: effects of scaffold modification. J. Biomed. Mater. Res. A. 2003;67:303–311.10.1002/(ISSN)1097-4636
  • Shinoka T, Shum-Tim D, Ma PX, et al. Creation of viable pulmonary artery autografts through tissue engineering. J. Thorac. Cardiovasc. Surg. 1998;115:536–545.10.1016/S0022-5223(98)70315-0
  • Chiu Y-C, Cheng M-H, Engel H, et al. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials. 2011;32:6045–6051.
  • Mooney DJ, Organ G, Vacanti JP, Langer R. Design and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transplant. 1994;3:203–210.
  • Furukawa KS, Ushida T, Toita K, Sakai Y, Tateishi T. Hybrid of gel-cultured smooth muscle cells with PLLA sponge as a scaffold towards blood vessel regeneration. Cell Transplant. 2002;11:475–480.
  • Ennett AB, Kaigler D, Mooney DJ. Temporally regulated delivery of VEGF in vitro and in vivo. J. Biomed. Mater. Res. A. 2006;79:176–184.10.1002/(ISSN)1552-4965
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer – Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010;35:1217–1256.10.1016/j.progpolymsci.2010.04.002
  • Watanabe M, Shin’oka T, Tohyama S, et al. Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng. 2001;7:429–439.10.1089/10763270152436481
  • Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med. 2001;344:532–533.10.1056/NEJM200102153440717
  • Jeong SI, Kwon JH, Lim JI, et al. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials. 2005;26:1405–1411.10.1016/j.biomaterials.2004.04.036
  • Shum-Tim D, Stock U, Hrkach J, et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann. Thorac. Surg. 1999;68:2298–2304.10.1016/S0003-4975(99)01055-3
  • Hoerstrup SP, Zünd G, Sodian R, Schnell AM, Grünenfelder J, Turina MI. Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac. Surg. 2001;20:164–169.10.1016/S1010-7940(01)00706-0
  • Markowicz M, Heitland A, Steffens GCM, Pallua N. Effects of modified collagen matrices on human umbilical vein endothelial cells. Int. J. Artif. Organs. 2005;28:1251–1258.
  • Shen YH, Shoichet MS, Radisic M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater. 2008;4:477–489.10.1016/j.actbio.2007.12.011
  • Mao Z, Shi H, Guo R, et al. Enhanced angiogenesis of porous collagen scaffolds by incorporation of TMC/DNA complexes encoding vascular endothelial growth factor. Acta Biomater. 2009;5:2983–2994.10.1016/j.actbio.2009.04.004
  • Collen A, Hanemaaijer R, Lupu F, et al. Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood. 2003;101:1810–1817.10.1182/blood-2002-05-1593
  • Hall H. Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis. Curr. Pharm. Des. 2007;13:3597–3607.10.2174/138161207782794158
  • Cooper TP, Sefton MV. Fibronectin coating of collagen modules increases in vivo HUVEC survival and vessel formation in SCID mice. Acta Biomater. 2011;7:1072–1083.10.1016/j.actbio.2010.11.008
  • Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering: Creation of long-lasting blood vessels. Nature. 2004;428:138–139.10.1038/428138a
  • Li DY, Brooke B, Davis EC, et al. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998;393:276–280.10.1038/30522
  • Leach JB, Wolinsky JB, Stone PJ, Wong JY. Crosslinked alpha-elastin biomaterials: Towards a processable elastin mimetic scaffold. Acta Biomater. 2005;1:155–164.10.1016/j.actbio.2004.12.001
  • Yin Y, Wise SG, Nosworthy NJ, et al. Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces. Biomaterials. 2009;30:1675–1681.10.1016/j.biomaterials.2008.11.009
  • Wong CS, Liu X, Xu Z, Lin T, Wang X. Elastin and collagen enhances electrospun aligned polyurethane as scaffolds for vascular graft. J. Mater. Sci. Mater. Med. 2013;24:1865–1874.10.1007/s10856-013-4937-y
  • Unger RE, Sartoris A, Peters K, et al. James Kirkpatrick C. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials. 2007;28:3965–3976.10.1016/j.biomaterials.2007.05.032
  • Unger RE, Ghanaati S, Orth C, et al. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials. 2010;31:6959–6967.10.1016/j.biomaterials.2010.05.057
  • Tuin A, Zandstra J, Kluijtmans SG, Bouwstra JB, Harmsen MC, Van Luyn MJA. Hyaluronic acid-recombinant gelatin gels as a scaffold for soft tissue regeneration. Eur. Cell Mater. 2012;24:320–330.
  • Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (epsilon-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials. 2011;32:8108–8117.10.1016/j.biomaterials.2011.07.022
  • Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009;8:457–470.10.1038/nmat2441
  • Keselowsky BG, Collard DM, García AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 2005;102:5953–5957.10.1073/pnas.0407356102
  • Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–441.10.1016/j.tibtech.2008.04.009
  • Gerecht-Nir S, Cohen S, Ziskind A, Itskovitz-Eldor J. Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol. Bioeng. 2004;88:313–320.10.1002/(ISSN)1097-0290
  • Smidsrød O, Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71–78.10.1016/0167-7799(90)90139-O
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337–4351.10.1016/S0142-9612(03)00340-5
  • Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev. 2001;52:105–115.10.1016/S0169-409X(01)00189-2
  • Fujita M, Ishihara M, Simizu M, et al. Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials. 2004;25:699–706.10.1016/S0142-9612(03)00557-X
  • Chiquet M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 1999;18:417–426.10.1016/S0945-053X(99)00039-6
  • Badylak SF, Taylor D, Uygun K. Whole organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 2010;13:27–53.
  • Badylak SF, Weiss DJ, Caplan A, Macchiarini P. Engineered whole organs and complex tissues. Lancet. 2012;379:943–952.10.1016/S0140-6736(12)60073-7
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–3243.10.1016/j.biomaterials.2011.01.057
  • Fu R-H, Wang Y-C, Liu S-P, et al. Decellularization and recellularization technologies in tissue engineering. Cell Transpl. 2014;23:621–630.10.3727/096368914X678382
  • Yang M, Chen CZ, Wang XN, Zhu Y Bin, Gu YJ. Favorable effects of the detergent and enzyme extraction method for preparing decellularized bovine pericardium scaffold for tissue engineered heart valves. J. Biomed. Mater. Res. – Part B Appl. Biomater. 2009;91:354–361. 10.1002/jbm.b.v91b:1
  • Morin O, Normand C. Long-term maintenance of hepatocyte functional activity in co-culture: Requirements for sinusoidal endothelial cells and dexamethasone. J. Cell Physiol. 1986;129:103–110.10.1002/(ISSN)1097-4652
  • Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol. Rev. 2003;83:59–115.10.1152/physrev.00017.2002
  • Vunjak-Novakovic G, Tandon N, Godier A, et al. Challenges in cardiac tissue engineering. Tissue Eng Part B Rev. 2010;16:169–187.10.1089/ten.teb.2009.0352
  • Nahmias Y, Berthiaume F, Yarmush ML. Integration of technologies for hepatic tissue engineering. Adv. Biochem. Eng. Biotechnol. 2007;103:309–329.
  • Ott HC, Matthiesen TS, Goh S-K, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 2008;14:213–221.10.1038/nm1684
  • Ott HC, Clippinger B, Conrad C, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 2010;16:927–933.10.1038/nm.2193
  • Desai TA. Micro- and nanoscale structures for tissue engineering constructs. Med. Eng. Phys. 2000;22:595–606.10.1016/S1350-4533(00)00087-4
  • Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25:4731–4739.10.1016/j.biomaterials.2003.12.002
  • Popat KC, Daniels RH, Dubrow RS, Hardev V, Desai TA. Nanostructured surfaces for bone biotemplating applications. J. Orthop. Res. 2006;24:619–627.10.1002/(ISSN)1554-527X
  • Kruyt MC, de Bruijn JD, Wilson CE, et al. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats. Tissue Eng. 2003;9:327–336.10.1089/107632703764664792
  • Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC. Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 1995;29:1517–1524.10.1002/(ISSN)1097-4636
  • Salem AK, Stevens R, Pearson RG, et al. Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J. Biomed. Mater. Res. 2002;61:212–217.10.1002/(ISSN)1097-4636
  • Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7:557–572.10.1089/107632701753213183
  • Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. U.S.A. 1989;86:933–937.10.1073/pnas.86.3.933
  • O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–441.10.1016/j.biomaterials.2004.02.052
  • Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng. Part B. Rev. 2010;16:523–539.10.1089/ten.teb.2010.0171
  • Bai F, Wang Z, Lu J, et al. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study. Tissue Eng. Part A. 2010;16:3791–3803.10.1089/ten.tea.2010.0148
  • Narayan D, Venkatraman SS. Effect of pore size and interpore distance on endothelial cell growth on polymers. J. Biomed. Mater. Res. A. 2008;87:710–718.10.1002/jbm.a.v87a:3
  • Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 2004;86:617–628.10.1016/S0006-3495(04)74140-5
  • Genes NG, Rowley JA, Mooney DJ, Bonassar LJ. Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch. Biochem. Biophys. 2004;422:161–167.10.1016/j.abb.2003.11.023
  • Califano JP, Reinhart-King CA. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 2008;1:122–132.10.1007/s12195-008-0022-x
  • Reinhart-King CA, Dembo M, Hammer DA. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 2005;89:676–689.10.1529/biophysj.104.054320
  • Reinhart-King CA, Dembo M, Hammer DA. Cell–cell mechanical communication through compliant substrates. Biophys. J. 2008;95:6044–6051.10.1529/biophysj.107.127662
  • Sakaguchi K, Shimizu T, Horaguchi S, et al. In vitro engineering of vascularized tissue surrogates. Sci. Rep. 2013;3:1316.
  • Uttayarat P, Toworfe GK, Dietrich F, Lelkes PI, Composto RJ. Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions. J. Biomed. Mater. Res. – Part A. 2005;75:668–680. 10.1002/(ISSN)1552-4965
  • Hu J, Hardy C, Chen C-M, Yang S, Voloshin AS, Liu Y. Enhanced Cell Adhesion and Alignment on Micro-Wavy Patterned Surfaces. PLoS ONE [ Internet]. 2014;9:e104502. Available from: http://dx.plos.org/10.1371/journal.pone.0104502.10.1371/journal.pone.0104502
  • Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–689.
  • Therriault D, Shepherd RF, White SR, Lewis JA. Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Adv. Mater. 2005;17:395–399.10.1002/(ISSN)1521-4095
  • Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 2014;26:3124–3130.10.1002/adma.201305506
  • Wang X-Y, Jin Z-H, Gan B-W, Lv S-W, Xie M, Huang W-H. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab Chip. 2014;14:2709–2716.10.1039/c4lc00069b
  • Miller JS, Stevens KR, Yang MT, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 2012;11:768–774.10.1038/nmat3357
  • Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip. 2013;13:3246–3252.10.1039/c3lc50493j
  • Shin M, Matsuda K, Ishii O, et al. Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed. Microdevices. 2004;6:269–278.10.1023/B:BMMD.0000048559.29932.27
  • Carraro A, Hsu W-MM, Kulig KM, et al. In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed. Microdevices. 2008;10:795–805.10.1007/s10544-008-9194-3
  • Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307–4314.10.1016/S0142-9612(02)00175-8
  • Skoog SA, Goering PL, Narayan RJ. Stereolithography in tissue engineering. J. Mater. Sci. Mater. Med. 2014;25:845–856.10.1007/s10856-013-5107-y
  • Nishiyama Y, Nakamura M, Henmi C, et al. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J. Biomech. Eng. 2009;131:035001.10.1115/1.3002759
  • Moon S, Hasan SK, Song YS, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C. Methods. 2010;16:157–166.10.1089/ten.tec.2009.0179
  • Smith CM, Stone AL, Parkhill RL, et al. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 2004;10:1566–1576.10.1089/ten.2004.10.1566
  • Buyukhatipoglu K, Chang R, Sun W, Clyne AM. Bioprinted nanoparticles for tissue engineering applications. Tissue Eng. Part C Methods. 2010;16:631–642.10.1089/ten.tec.2009.0280
  • Raghavan S, Nelson CM, Baranski JD, Lim E, Chen CS. Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng. Part A. 2010;16:2255–2263.10.1089/ten.tea.2009.0584
  • Wray LS, Rnjak-Kovacina J, Mandal BB, Schmidt DF, Gil ES, Kaplan DL. A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials. 2012;33:9214–9224.10.1016/j.biomaterials.2012.09.017
  • Sadr N, Zhu M, Osaki T, et al. SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials. 2011;32:7479–7490.10.1016/j.biomaterials.2011.06.034
  • Golden AP, Tien J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip. 2007;7:720–725.10.1039/b618409j
  • Khattak SF, Bhatia SR, Roberts SC. Pluronic F127 as a cell encapsulation material: utilization of membrane-stabilizing agents. Tissue Eng. 2005;11:974–983.10.1089/ten.2005.11.974
  • Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14:2202–2211.10.1039/C4LC00030G
  • Leslie-Barbick JE, Shen C, Chen C, West JL. Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng. Part A. 2011;17:221–229.10.1089/ten.tea.2010.0202
  • Cuchiara MP, Gould DJ, McHale MK, Dickinson ME, West JL. Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv. Funct. Mater. 2012;22:4511–4518.10.1002/adfm.v22.21
  • Leslie-Barbick JE, Saik JE, Gould DJ, Dickinson ME, West JL. The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials. 2011;32:5782–5789.10.1016/j.biomaterials.2011.04.060
  • Phelps EA, Landázuri N, Thulé PM, Taylor WR, García AJ. Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci. U.S.A. 2010;107:3323–3328.10.1073/pnas.0905447107
  • Kniazeva E, Kachgal S, Putnam AJ. Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Eng. Part A. 2011;17:905–914.10.1089/ten.tea.2010.0275
  • Kaihara S, Borenstein J, Koka R, et al. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng. 2000;6:105–117.10.1089/107632700320739
  • Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP. Microfabrication technology for vascularized tissue engineering. Biomed. Microdevices. 2002;4:167–175.10.1023/A:1016040212127
  • Murphy WL, Dennis RG, Kileny JL, Mooney DJ. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng. 2002;8:43–52.10.1089/107632702753503045
  • Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 1998;42:396–402.10.1002/(ISSN)1097-4636
  • Giordano RA, Wu BM, Borland SW, Cima LG, Sachs EM, Cima MJ. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J. Biomater. Sci. Polym. Ed. 1996;8:63–75.
  • Clementi E, Brown GC, Foxwell N, Moncada S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc. Natl. Acad. Sci. U.S.A. 1999;96:1559–1562.10.1073/pnas.96.4.1559
  • Dewey CF, Bussolari SR, Gimbrone MA, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 1981;103:177–185.10.1115/1.3138276
  • Malek A, Izumo S. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am. J. Physiol. 1992;263:C389–C396.
  • Lim D, Kamotani Y, Cho B, Mazumder J, Takayama S. Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip. 2003;3:318–323.10.1039/b308452c
  • King KR, Wang CCJ, Kaazempur-Mofrad MR, Vacanti JP, Borenstein JT. Biodegradable microfluids. Adv. Mater. 2004;16:2007–2012.10.1002/(ISSN)1521-4095
  • Bettinger CJ, Weinberg EJ, Kulig KM, et al. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv. Mater. 2006;18:165–169.10.1002/(ISSN)1521-4095
  • Bettinger CJ, Cyr KM, Matsumoto A, Langer R, Borenstein JT, Kaplan DL. Silk fibroin microfluidic devices. Adv. Mater. 2007;19:2847–2850.10.1002/(ISSN)1521-4095
  • Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat. Biotechnol. 2002;20:602–606.
  • Wang Y, Kim YM, Langer R. In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Mater. Res. A. 2003;66:192–197.10.1002/(ISSN)1097-4636
  • Ignatius AA, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials. 1996;17:831–839.10.1016/0142-9612(96)81421-9
  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998;70:4974–4984.10.1021/ac980656z
  • Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. Microfluidic scaffolds for tissue engineering. Nat. Mater. 2007;6:908–915.10.1038/nmat2022
  • Tang MD, Golden AP, Tien J. Fabrication of collagen gels that contain patterned, micrometer-scale cavities. Adv. Mater. 2004;16:1345–1348.10.1002/(ISSN)1521-4095
  • Dean DM, Napolitano AP, Youssef J, Morgan JR. Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J. 2007;21:4005–4012.10.1096/fj.07-8710com
  • Yeh J, Ling Y, Karp JM, et al. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials. 2006;27:5391–5398.10.1016/j.biomaterials.2006.06.005
  • L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12:47–56.
  • Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21:157–161.10.1016/S0167-7799(03)00033-7
  • McGuigan AP, Sefton MV. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl. Acad. Sci. U.S.A. 2006;103:11461–11466.10.1073/pnas.0602740103
  • Corstorphine L, Sefton MV. Effectiveness factor and diffusion limitations in collagen gel modules containing HepG2 cells. J. Tissue Eng. Regen. Med. 2011;5:119–129.10.1002/term.v5.2
  • McGuigan AP, Leung B, Sefton MV. Fabrication of cell-containing gel modules to assemble modular tissue-engineered constructs. [corrected] Nat. Protoc. 2006;1:2963–2969.
  • L’Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 2007;357:1451–1453.10.1056/NEJMc071536
  • Du Y, Lo E, Ali S, Khademhosseini A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl. Acad. Sci. U.S.A. 2008;105:9522–9527.10.1073/pnas.0801866105
  • Chamberlain MD, Gupta R, Sefton MV. Chimeric vessel tissue engineering driven by endothelialized modules in immunosuppressed sprague-dawley rats. Tissue Eng. Part A. 2011;17:151–160.10.1089/ten.tea.2010.0293
  • Chamberlain MD, Gupta R, Sefton MV. Bone marrow-derived mesenchymal stromal cells enhance chimeric vessel development driven by endothelial cell-coated microtissues. Tissue Eng. Part A. 2012;18:285–294.10.1089/ten.tea.2011.0393
  • Nichol JW, Khademhosseini A. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter. 2009;5:1312.10.1039/b814285h
  • Wu W, Deconinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 2011;23:H178–H183.
  • Liu VA, Bhatia SN. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdevices. 2002;4:257–266.10.1023/A:1020932105236
  • Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 1998;14:356–363.10.1021/bp980031m
  • Wang YC, Ho CC. Micropatterning of proteins and mammalian cells on biomaterials. FASEB J. 2004;18:525–527.
  • Muehleder S, Ovsianikov A, Zipperle J, Redl H, Holnthoner W. Connections matter: channeled hydrogels to improve vascularization. Front. Bioeng. Biotechnol. 2014;2:52.
  • McGuigan AP, Sefton MV. The thrombogenicity of human umbilical vein endothelial cell seeded collagen modules. Biomaterials. 2008;29:2453–2463.10.1016/j.biomaterials.2008.02.010
  • Gauvin R, Guillemette M, Dokmeci M, Khademhosseini A. Application of microtechnologies for the vascularization of engineered tissues. Vasc. Cell. 2011;3:24.10.1186/2045-824X-3-24
  • Hungerford JE, Owens GK, Argraves WS, Little CD. Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Dev. Biol. 1996;178:375–392.10.1006/dbio.1996.0225
  • Jung YD, Ahmad SA, Liu W, et al. The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin. Cancer Biol. 2002;12:105–112.
  • Drake CJ, Hungerford JE, Little CD. morphogenesis of the first blood vessels. Ann. NY Acad. Sci. 1998;857:155–179.10.1111/nyas.1998.857.issue-1
  • Ennett AB, Mooney DJ. Tissue engineering strategies for in vivo neovascularisation. Expert Opin. Biol. Ther. 2002;2:805–818.10.1517/14712598.2.8.805
  • Nör JE, Peters MC, Christensen JB, et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest. 2001;81:453–463.10.1038/labinvest.3780253
  • Tonello C, Zavan B, Cortivo R, Brun P, Panfilo S, Abatangelo G. In vitro reconstruction of human dermal equivalent enriched with endothelial cells. Biomaterials. 2003;24:1205–1211.10.1016/S0142-9612(02)00450-7
  • Borges J, Tegtmeier FT, Padron NT, Mueller MC, Lang EM, Stark GB. chorioallantoic membrane angiogenesis model for tissue engineering: a new twist on a classic model. Tissue Eng. 2003;9:441–450.10.1089/107632703322066624
  • Richard L, Velasco P, Detmar M. Isolation and culture of microvascular endothelial cells. Methods Mol. Med. 1999;18:261–269.
  • Karasek MA. Microvascular Endothelial Cell Culture. J Investig Dermatol [Internet]. The Williams & Wilkins Co. 1989;93:33S–38S. Available from: http://dx.doi.org/10.1038/jid.1989.6.
  • Vailhé B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Invest. 2001;81:439–452.10.1038/labinvest.3780252
  • Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a 21st century solution to surgical reconstruction. Ann. Thorac. Surg. 2001;72:577–591.10.1016/S0003-4975(01)02820-X
  • LANG I, Pabst MA, Hiden U, et al. Heterogeneity of microvascular endothelial cells isolated from human term placenta and macrovascular umbilical vein endothelial cells. Eur. J. Cell Biol. 2003;82:163–173.10.1078/0171-9335-00306
  • Aird WC. Phenotypic heterogeneity of the endothelium: II. representative vascular beds. Circ. Res. 2007;100:174–190.10.1161/01.RES.0000255690.03436.ae
  • Sumpio BE, Du W, Galagher G, et al. Regulation of PDGF-B in endothelial cells exposed to cyclic strain. Arterioscler. Thromb. Vasc. Biol. 1998;18:349–355.10.1161/01.ATV.18.3.349
  • Borges J, Mueller MC, Padron NT, Tegtmeier F, Lang EM, Stark GB. Engineered adipose tissue supplied by functional microvessels. Tissue Eng. 2003;9:1263–1270.10.1089/10763270360728170
  • Skovseth DK, Yamanaka T, Brandtzaeg P, Butcher EC, Haraldsen G. vascular morphogenesis and differentiation after adoptive transfer of human endothelial cells to immunodeficient mice. Am. J. Pathol. 2002;160:1629–1637.10.1016/S0002-9440(10)61110-8
  • Chen X, Aledia AS, Ghajar CM, et al. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A. 2009;15:1363–1371.10.1089/ten.tea.2008.0314
  • Alajati A, Laib AM, Weber H, et al. Spheroid-based engineering of a human vasculature in mice. Nat. Methods. 2008;5:439–445.10.1038/nmeth.1198
  • Levenberg S, Rouwkema J, Macdonald M, et al. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 2005;23:879–884.10.1038/nbt1109
  • Owens GK, Kumar MS, Wamhoff BR. molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 2004;84:767–801.10.1152/physrev.00041.2003
  • Wu X, Rabkin-Aikawa E, Guleserian KJ, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 2004;287:H480–H487.10.1152/ajpheart.01232.2003
  • Song J, Rolfe BE, Hayward IP, Campbell GR, Campbell JH. Effects of collagen gel configuration on behavior of vascular smooth muscle cells in vitro: Association with vascular morphogenesis. In Vitro Cell. Dev. Biol. Anim. 2000;36:600–610.10.1007/BF02577528
  • Nicosia RF, Villaschi S. Rat aortic smooth muscle cells become pericytes during angiogenesis in vitro. Lab Invest. 1995;73:658–666.
  • Hegen A, Blois A, Tiron CE, et al. Efficient in vivo vascularization of tissue-engineering scaffolds. J. Tissue Eng. Regen. Med. 2011;5:52–62.10.1002/term.v5.4
  • Kim S, von Recum H. endothelial stem cells and precursors for tissue engineering: cell source, differentiation, selection, and application. Tissue Eng. Part B. Rev. 2008;14:133–147.10.1089/teb.2007.0304
  • Brey EM, McIntire L V. Vascular Assembly in Engineered and Natural Tissues. In: Atala A, editor. Principles of Regenerative Medicine. Burlington, VT: Elsiver; 2008. p. 1020–1037.
  • Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. 2003;9:702–712.10.1038/nm0603-702
  • Wang ZZ, Au P, Chen T, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat. Biotechnol. 2007;25:317–318.10.1038/nbt1287
  • Zengin E, Chalajour F, Gehling UM, et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development. 2006;133:1543–1551.10.1242/dev.02315
  • Mead LE, Prater D, Yoder MC, Ingram DA. Isolation and characterization of endothelial progenitor cells from human blood. Curr. Protoc. Stem Cell Biol. 2008; Chapter 2.
  • Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–967.10.1126/science.275.5302.964
  • Melero-Martin JM, De Obaldia ME, Kang S-Y, et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ. Res. 2008;103:194–202.10.1161/CIRCRESAHA.108.178590
  • Au P, Daheron LM, Duda DG, et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood. 2008;111:1302–1305.
  • Williams C, Wick TM. Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng. 2004;10:930–941.10.1089/1076327041348536
  • Kofidis T, Akhyari P, Boublik J, et al. In vitro engineering of heart muscle: artificial myocardial tissue. J. Thorac. Cardiovasc. Surg. 2002;124:63–69.10.1067/mtc.2002.121971
  • Conklin BS, Zhong D, Zhao W, Lin PH, Chen C. Shear stress regulates occludin and vegf expression in porcine arterial endothelial cells. J. Surg. Res. 2002;102:13–21.10.1006/jsre.2001.6295
  • Li J, Zhang Y-P, Kirsner RS. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech. 2003;60:107–114.10.1002/jemt.10249
  • Ferrara N. Vascular endothelial growth factor: molecular and biological aspects. Curr. Top. Microbiol. Immunol. 1999;237:1–30.
  • Brown KJ, Maynes SF, Bezos A, Maguire DJ, Ford MD, Parish CR. A novel in vitro assay for human angiogenesis. Lab Invest. 1996;75:539–555.
  • Yamagishi S, Kawakami T, Fujimori H, et al. Insulin stimulates the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. Microvasc. Res. 1999;57:329–339.10.1006/mvre.1999.2145
  • Lu M, Amano S, Miyamoto K, et al. Insulin-induced vascular endothelial growth factor expression in retina. Invest. Ophthalmol. Vis. Sci. 1999;40:3281–3286.
  • Smith MK, Peters MC, Richardson TP, Garbern JC, Mooney DJ. Locally enhanced angiogenesis promotes transplanted cell survival. Tissue Eng. 2004;10:63–71.10.1089/107632704322791709
  • Greenberg JI, Shields DJ, Barillas SG, et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008;456:809–813.10.1038/nature07424
  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242–248.10.1038/35025215
  • Simón-Yarza T, Formiga FR, Tamayo E, Pelacho B, Prosper F, Blanco-Prieto MJ. Vascular endothelial growth factor-delivery systems for cardiac repair: an overview. Theranostics 2012;2:541–552.10.7150/thno.3682
  • Lee KW, Yoon JJ, Lee JH, et al. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan. Transpl. Proc. 2004;36:2464–2465.10.1016/j.transproceed.2004.08.078
  • Hao X, Silva EA, Månsson-Broberg A, et al. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 2007;75:178–185.10.1016/j.cardiores.2007.03.028
  • Freeman I, Cohen S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials. 2009;30:2122–2131.10.1016/j.biomaterials.2008.12.057
  • Distler JHW, Hirth A, Kurowska-Stolarska M, Gay RE, Gay S, Distler O. Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q. J. Nucl. Med. 2003;47:149–161.
  • Nehls V, Drenckhahn D. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc. Res. 1995;50:311–322.10.1006/mvre.1995.1061
  • Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. A. 2003;65:489–497.10.1002/(ISSN)1097-4636
  • Sakakibara Y, Nishimura K, Tambara K, et al. Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation. J. Thorac. Cardiovasc. Surg. 2002;124:50–56.10.1067/mtc.2002.121293
  • Nillesen STM, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials. 2007;28:1123–1131.10.1016/j.biomaterials.2006.10.029
  • Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ. Res. 1999;84:298–305.10.1161/01.RES.84.3.298
  • Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 2001;19:1029–1034.10.1038/nbt1101-1029
  • Davis S, Yancopoulos GD. The angiopoietins: yin and yang in angiogenesis. Curr. Top. Microbiol. Immunol. 1999;237:173–185.
  • Pepper MS. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev. 1997;8:21–43.10.1016/S1359-6101(96)00048-2
  • Darland DC D’Amore PA. Blood vessel maturation: vascular development comes of age. J. Clin. Invest; 1999;103:157–158.10.1172/JCI6127
  • Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development. 1995;121:1845–1854.
  • Van den Driesche S, Mummery CL, Westermann CJJ. Hereditary hemorrhagic telangiectasia: an update on transforming growth factor beta signaling in vasculogenesis and angiogenesis. Cardiovasc. Res. 2003;58:20–31.10.1016/S0008-6363(02)00852-0
  • Tengood JE, Kovach KM, Vescovi PE, Russell AJ, Little SR. Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis. Biomaterials. 2010;31:7805–7812.10.1016/j.biomaterials.2010.07.010
  • Tengood JE, Ridenour R, Brodsky R, Russell AJ, Little SR. Sequential delivery of basic fibroblast growth factor and platelet-derived growth factor for angiogenesis. Tissue Eng. Part A. 2011;17:1181–1189.10.1089/ten.tea.2010.0551
  • Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW. Growth factor delivery approaches in hydrogels. Biomacromolecules. 2009;10:9–18.10.1021/bm801103c
  • Ehrbar M, Metters A, Zammaretti P, Hubbell JA, Zisch AH. Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J. Control. Release. 2005;101:93–109.10.1016/j.jconrel.2004.07.018
  • Maynard HD, Hubbell JA. Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomater. 2005;1:451–459.10.1016/j.actbio.2005.04.004
  • Chiu LLY, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials. 2010;31:226–241.10.1016/j.biomaterials.2009.09.039
  • Mann BK, Schmedlen RH, West JL. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials. 2001;22:439–444.10.1016/S0142-9612(00)00196-4
  • Steffens GCM, Yao C, Prével P, et al. Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Eng. 2004;10:1502–1509.10.1089/ten.2004.10.1502
  • Kitajima T, Terai H, Ito Y. A fusion protein of hepatocyte growth factor for immobilization to collagen. Biomaterials. 2007;28:1989–1997.10.1016/j.biomaterials.2006.12.022
  • Zhao W, Han Q, Lin H, et al. Improved neovascularization and wound repair by targeting human basic fibroblast growth factor (bFGF) to fibrin. J. Mol. Med. 2008;86:1127–1138.10.1007/s00109-008-0372-9
  • Tayalia P, Mooney DJ. Controlled growth factor delivery for tissue engineering. Adv. Mater. 2009;21:3269–3285.10.1002/adma.v21:32/33
  • Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J. Bone Miner. Res. 2006;21:735–744.10.1359/jbmr.060120
  • Khanna O, Moya ML, Greisler HP, Opara EC, Brey EM. Multilayered microcapsules for the sustained-release of angiogenic proteins from encapsulated cells. Am. J. Surg. 2010;200:655–658.10.1016/j.amjsurg.2010.08.001
  • Freeman I, Kedem A, Cohen S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials. 2008;29:3260–3268.10.1016/j.biomaterials.2008.04.025
  • Dodla MC, Bellamkonda RV. Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials. 2008;29:33–46.10.1016/j.biomaterials.2007.08.045
  • Chen RR, Silva EA, Yuen WW, Mooney DJ. Spatio–temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharmaceutical Research. 2007;24:258–264.10.1007/s11095-006-9173-4
  • Jain RK, Safabakhsh N, Sckell A, et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc. Natl. Acad. Sci. U.S.A. 1998;95:10820–10825.10.1073/pnas.95.18.10820
  • Zisch AH, Lutolf MP, Ehrbar M, et al. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 2003;17:2260–2262.
  • Bir SC, Esaki J, Marui A, et al. Angiogenic properties of sustained release platelet-rich plasma: Characterization in-vitro and in the ischemic hind limb of the mouse. J. Vasc. Surg. 2009;50:870–879.
  • Marx RE. Platelet-rich plasma: evidence to support its use. J. Oral Maxillofac. Surg. 2004;62:489–496.10.1016/j.joms.2003.12.003
  • Sugimori E, Shintani S, Ishikawa K, Hamakawa H. Effects of apatite foam combined with platelet-rich plasma on regeneration of bone defects. Dent. Mater. J. 2006;25:591–596.10.4012/dmj.25.591
  • Kurita J, Miyamoto M, Ishii Y, et al. Enhanced vascularization by controlled release of platelet-rich plasma impregnated in biodegradable gelatin hydrogel. Ann. Thorac. Surg. 2011;92:837–844.10.1016/j.athoracsur.2011.04.084
  • Déry M-AC, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol. 2005;37:535–540.10.1016/j.biocel.2004.08.012
  • Deckers MML, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology. 2002;143:1545–1553.10.1210/endo.143.4.8719
  • Pola R, Ling LE, Silver M, et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat. Med. 2001;7:706–711.10.1038/89083
  • Johnson NR, Wang Y. Controlled delivery of sonic hedgehog morphogen and its potential for cardiac repair. PLoS One. 2013;8:e63075.
  • Rissanen TT, Vajanto I, Ylä-Herttuala S. Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb – on the way to the clinic. Eur. J. Clin. Invest. 2001;31:651–666.10.1046/j.1365-2362.2001.00864.x
  • Ghosh R, Walsh SR, Tang TY, Noorani A, Hayes PD. Gene therapy as a novel therapeutic option in the treatment of peripheral vascular disease: systematic review and meta-analysis. Int. J. Clin. Pr. 2008;62:1383–1390.10.1111/j.1742-1241.2008.01842.x
  • Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol. 2013;36:1–22.
  • Walther W, Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs. 2000;60:249–271.10.2165/00003495-200060020-00002
  • Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 2001;7:33–40.10.1038/83324
  • dos Santos Coura R, Nardi NB. Correction: the state of the art of adeno-associated virus-based vectors in gene therapy. Virol. J. 2010;7:12.10.1186/1743-422X-7-12
  • Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J. 2009;11:671–681.10.1208/s12248-009-9143-y
  • Mehier-Humbert S, Guy RH. Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 2005;57:733–753.10.1016/j.addr.2004.12.007
  • Mellott AJ, Forrest ML, Detamore MS. Physical non-viral gene delivery methods for tissue engineering. Ann. Biomed. Eng. 2013;41:446–468.10.1007/s10439-012-0678-1
  • Khondee S, Baoum A, Siahaan TJ, Berkland C. Calcium condensed LABL-TAT complexes effectively target gene delivery to ICAM-1 expressing cells. Mol. Pharm. 2011;8:788–798.10.1021/mp100393j
  • Wiethoff CM, Middaugh CR. Barriers to nonviral gene delivery. J. Pharm. Sci. 2003;92:203–217.10.1002/(ISSN)1520-6017
  • Su H, Takagawa J, Huang Y, et al. Additive effect of AAV-mediated angiopoietin-1 and VEGF expression on the therapy of infarcted heart. Int. J. Cardiol. 2009;133:191–197.10.1016/j.ijcard.2007.12.034
  • Shyu KG, Manor O, Magner M, Yancopoulos GD, Isner JM. Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb. Circulation. 1998;98:2081–2087.10.1161/01.CIR.98.19.2081
  • Hao X, Månsson-Broberg A, Gustafsson T, et al. Angiogenic effects of dual gene transfer of bFGF and PDGF-BB after myocardial infarction. Biochem. Biophys. Res. Commun. 2004;315:1058–1063.10.1016/j.bbrc.2004.01.165
  • Shea LD, Smiley E, Bonadio J, Mooney DJ. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 1999;17:551–554.
  • Jabbarzadeh E, Starnes T, Khan YM, et al. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc. Natl. Acad. Sci. U.S.A. 2008;105:11099–11104.10.1073/pnas.0800069105
  • De Coppi P, Delo D, Farrugia L, et al. Angiogenic gene-modified muscle cells for enhancement of tissue formation. Tissue Eng. 2005;11:1034–1044.10.1089/ten.2005.11.1034
  • Yang F, Cho S-W, Son SM, et al. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2010;107:3317–3322.10.1073/pnas.0905432106
  • Hiscox AM, Stone AL, Limesand S, Hoying JB, Williams SK. An islet-stabilizing implant constructed using a preformed vasculature. Tissue Eng. Part A. 2008;14:433–440.10.1089/tea.2007.0099
  • Hussey AJ, Winardi M, Han X-L, et al. Seeding of pancreatic islets into prevascularized tissue engineering chambers. Tissue Eng. Part A. 2009;15:3823–3833.10.1089/ten.tea.2008.0682
  • Dvir T, Kedem A, Ruvinov E, et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl. Acad. Sci. U.S.A. 2009;106:14990–14995.10.1073/pnas.0812242106
  • Khan OF, Sefton MV. Endothelialized biomaterials for tissue engineering applications in vivo. Trends Biotechnol. 2011;29:379–387.10.1016/j.tibtech.2011.03.004
  • Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am. J. Transplant. 2005;5:1002–1010.10.1111/ajt.2005.5.issue-5
  • Rouwkema J, de Boer J, Van Blitterswijk CA. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 2006;12:2685–2693.10.1089/ten.2006.12.2685
  • Shepherd BR, Chen HYS, Smith CM, Gruionu G, Williams SK, Hoying JB. Rapid perfusion and network remodeling in a microvascular construct after implantation. Arterioscler. Thromb. Vasc. Biol. 2004;24:898–904.10.1161/01.ATV.0000124103.86943.1e
  • Schultheiss D, Gabouev AI, Cebotari S, et al. Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and short-term implantation in a porcine model. J. Urol. 2005;173:276–280.10.1097/01.ju.0000145882.80339.18
  • Cronin KJ, Messina A, Knight KR, et al. New murine model of spontaneous autologous tissue engineering, combining an arteriovenous pedicle with matrix materials. Plast. Reconstr. Surg. 2004;113:260–269.10.1097/01.PRS.0000095942.71618.9D
  • Forster NA, Penington AJ, Hardikar AA, et al. A prevascularized tissue engineering chamber supports growth and function of islets and progenitor cells in diabetic mice. Islets. 2011;3:271–283.10.4161/isl.3.5.15942
  • Dolderer JH, Thompson EW, Slavin J, et al. Long-term stability of adipose tissue generated from a vascularized pedicled fat flap inside a chamber. Plast. Reconstr. Surg. 2011;127:2283–2292.10.1097/PRS.0b013e3182131c3e
  • Wiggenhauser PS, Müller DF, Melchels FPW, et al. Engineering of vascularized adipose constructs. Cell Tissue Res. 2012;347:747–757.10.1007/s00441-011-1226-2
  • Borschel GH, Dow DE, Dennis RG, Brown DL. Tissue-engineered axially vascularized contractile skeletal muscle. Plast. Reconstr. Surg. 2006;117:2235–2242.10.1097/01.prs.0000224295.54073.49
  • Morritt AN, Bortolotto SK, Dilley RJ, et al. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation. 2007;115:353–360.10.1161/CIRCULATIONAHA.106.657379
  • Sasagawa T, Shimizu T, Sekiya S, et al. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials. 2010;31:1646–1654.10.1016/j.biomaterials.2009.11.036
  • Yang J, Yamato M, Shimizu T, et al. Reconstruction of functional tissues with cell sheet engineering. Biomaterials. 2007;28:5033–5043.10.1016/j.biomaterials.2007.07.052
  • OpenStax College. Anatomy & Physiology. OpenStax CNX. 2014 Jul 30. Available from: http://cnx.org/contents/[email protected] (https://creativecommons.org/licenses/by/3.0/).
  • Bячecлaв Eвдoкимoв. (Own work) [CC BY-SA 3.0 (https://creativecommons.org/licenses/by/3.0/deed.en)]. via Wikimedia Commons [Internet]. 2012. Available from: https://commons.wikimedia.org/wiki/File:Angiogenesis_2.jpg.
  • Nakada M, Kita D, Watanabe T, et al. Aberrant signaling pathways in glioma. Cancers (Basel). 2011;3:3242–3278. (https://creativecommons.org/licenses/by/3.0/).
  • Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 2010;3:1863–1887.10.3390/ma3031863
  • Chen G, Ushida T, Tateishi T. Scaffold design for tissue engineering. Macromol. Biosci. 2002;2:67–77.10.1002/(ISSN)1616-5195
  • Wallace DG, Rosenblatt J. Collagen gel systems for sustained delivery and tissue engineering. Adv. Drug Deliv. Rev. 2003;55:1631–1649.10.1016/j.addr.2003.08.004
  • Pachence JM, Kohn J. Biodegradable polymers for tissue engineering. In: Lanza R, Langer R, Chick W, editors. Principles of Tissue Engineering. San Diego, CA: Academic Press; 1997. p. 273–293.
  • Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int. J. Pharm. 2001;221:1–22.10.1016/S0378-5173(01)00691-3
  • Ma L, Gao C, Mao Z, et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24:4833–4841.10.1016/S0142-9612(03)00374-0
  • Baier Leach J, Bivens KA, Patrick CW, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng. 2003;82:578–589.10.1002/(ISSN)1097-0290
  • Gomes ME, Reis RL. Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 2 systems for temporary replacement and advanced tissue regeneration. Int. Mater. Rev. 2004;49:274–285.10.1179/095066004225021927
  • Ranganathan S, Ganguly AK, Datta K. Evidence for presence of hyaluronan binding protein on spermatozoa and its possible involvement in sperm function. Mol. Reprod. Dev. 1994;38:69–76.10.1002/(ISSN)1098-2795
  • Liu LS, Thompson AY, Heidaran MA, Poser JW, Spiro RC. An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials. 1999;20:1097–1108.10.1016/S0142-9612(99)00006-X
  • Jeon O, Song SJ, Lee KJ, et al. Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydr. Polym. 2007;70:251–257.10.1016/j.carbpol.2007.04.002
  • Ye Q, Zünd G, Benedikt P, et al. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur. J. Cardiothorac. Surg. 2000;17:587–591.10.1016/S1010-7940(00)00373-0
  • Vaiman M, Sarfaty S, Shlamkovich N, Segal S, Eviatar E. Fibrin sealant: alternative to nasal packing in endonasal operations. A prospective randomized study. Isr. Med. Assoc. J. 2005;7:571–574.
  • Sha’ban M, Kim SH, Idrus RB, Khang G. Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study. J. Orthop. Surg. Res. 2008;3:17.10.1186/1749-799X-3-17
  • Shaikh FM, Callanan A, Kavanagh EG, Burke PE, Grace PA, McGloughlin TM. Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs. 2008;188:333–346.10.1159/000139772
  • Mol A, van Lieshout MI, Dam-de Veen CG, et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials. 2005;26:3113–3121.10.1016/j.biomaterials.2004.08.007
  • Aper T, Schmidt A, Duchrow M, Bruch H-P. Autologous blood vessels engineered from peripheral blood sample. Eur. J. Vasc. Endovasc. Surg. 2007;33:33–39.10.1016/j.ejvs.2006.08.008
  • Tuan TL, Song A, Chang S, Younai S, Nimni ME. In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp. Cell Res. 1996;223:127–134.10.1006/excr.1996.0065
  • Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA. Covalently conjugated VEGF–fibrin matrices for endothelialization. J. Control Release. 2001;72:101–113.10.1016/S0168-3659(01)00266-8
  • Ahmann KA, Weinbaum JS, Johnson SL, Tranquillo RT. Fibrin degradation enhances vascular smooth muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro. Tissue Eng. Part A. 2010;16:3261–3270.10.1089/ten.tea.2009.0708
  • Sporn LA, Bunce LA, Francis CW. Cell proliferation on fibrin: modulation by fibrinopeptide cleavage. Blood. 1995;86:1802–1810.
  • Jockenhoevel S, Zund G, Hoerstrup SP, et al. Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. Eur. J. Cardiothorac. Surg. 2001;19:424–430.10.1016/S1010-7940(01)00624-8
  • Sidelmann JJ, Gram J, Jespersen J. Kluft C. Fibrin clot formation and lysis: basic mechanisms. Semin. Thromb. Hemost; 2000;26:605–618.10.1055/s-2000-13216
  • Ungari S, Katari RS, Alessandri G, Gullino PM. Cooperation between fibronectin and heparin in the mobilization of capillary endothelium. Invasion Metastasis. 1985;5:193–205.
  • Bourdoulous S, Orend G, MacKenna DA, Pasqualini R, Ruoslahti E. Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression. J. Cell Biol. 1998;143:267–276.10.1083/jcb.143.1.267
  • Hynes R. Molecular biology of fibronectin. Annu. Rev. Cell Biol. 1985;1:67–90.10.1146/annurev.cb.01.110185.000435
  • Grinnell F. Fibronectin and wound healing. J. Cell. Biochem. 1984;26:107–116.10.1002/(ISSN)1097-4644
  • Zhou L, Maruyama I, Li Y, Cheng EL, Yue BY. Expression of integrin receptors in the human trabecular meshwork. Curr. Eye Res. 1999;19:395–402.10.1076/ceyr.19.5.395.5297
  • Wittmer CR, Phelps JA, Saltzman WM, Van Tassel PR. Fibronectin terminated multilayer films: Protein adsorption and cell attachment studies. Biomaterials. 2007;28:851–860.10.1016/j.biomaterials.2006.09.037
  • Aframian DJ, Cukierman E, Nikolovski J, Mooney DJ, Yamada KM, Baum BJ. The growth and morphological behavior of salivary epithelial cells on matrix protein-coated biodegradable substrata. Tissue Eng. 2000;6:209–216.10.1089/10763270050044380
  • Kim B-S, Park I-K, Hoshiba T, et al. Design of artificial extracellular matrices for tissue engineering. Prog. Polym. Sci. 2011;36:238–268.10.1016/j.progpolymsci.2010.10.001
  • Vogel V, Baneyx G. The tissue engineeting puzzle: a molecular perspective. Annu. Rev. Biomed. Eng. 2003;5:441–463.10.1146/annurev.bioeng.5.040202.121615
  • Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101:1869–1879.10.1021/cr000108x
  • Jeon O, Bouhadir KH, Mansour JM, Alsberg E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials. 2009;30:2724–2734.10.1016/j.biomaterials.2009.01.034
  • Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 2007;59:207–233.
  • Bai X, Fang R, Zhang S, et al. Self-cross-linkable hydrogels composed of partially oxidized alginate and gelatin for myocardial infarction repair. J. Bioact. Compat. Polym. 2013;28:126–140.10.1177/0883911512473230
  • Smetana K. Cell biology of hydrogels. Biomaterials. 1993;14:1046–1050.10.1016/0142-9612(93)90203-E
  • Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30:5910–5917.10.1016/j.biomaterials.2009.06.034
  • Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials. 2012;33:3824–3834.10.1016/j.biomaterials.2012.01.048
  • Lee VK, Lee W, Yoo SS, Dai G. Construction of vasculature structure within fluidic channel using three-dimensional bio-printer. 2011 IEEE 37th Annu. Northeast Bioeng. Conf. NEBEC 2011. 2011.
  • Nahmias Y, Odde DJ. Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic-endothelial sinusoid-like structures. Nat. Protoc. 2006;1:2288–2296.10.1038/nprot.2006.386
  • Zieber L, Or S, Ruvinov E, Cohen S. Microfabrication of channel arrays promotes vessel-like network formation in cardiac cell construct and vascularization in vivo. Biofabrication. 2014;6:024102.10.1088/1758-5082/6/2/024102
  • Wüst S, Müller R, Hofmann S. Controlled positioning of cells in biomaterials – approaches towards 3D tissue printing. J. Funct. Biomater. 2011;2:119–154.10.3390/jfb2030119
  • Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J. Biomed. Mater. Res. B Appl. Biomater. 2003;64:65–69.10.1002/(ISSN)1097-4636
  • Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int. J. Nanomedicine. 2013;8:337–350.10.2147/IJN
  • Koch S, Yao C, Grieb G, Prével P, Noah EM, Steffens GCM. Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J. Mater. Sci. Mater. Med. 2006;17:735–741.10.1007/s10856-006-9684-x
  • Sato N, Beitz JG, Kato J, et al. Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am. J. Pathol. 1993;142:1119–1130.
  • Royce PM, Kato T, Ohsaki K, Miura A. The enhancement of cellular infiltration and vascularisation of a collagenous dermal implant in the rat by platelet-derived growth factor BB. J. Dermatol. Sci. 1995;10:42–52.10.1016/0923-1811(95)93713-B
  • Tabata Y, Ikada Y. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials. 1999;20:2169–2175.10.1016/S0142-9612(99)00121-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.