548
Views
12
CrossRef citations to date
0
Altmetric
Articles

Formation and characterisation of a modifiable soft macro-porous hyaluronic acid cryogel platform

, , , &
Pages 881-897 | Received 11 Mar 2015, Accepted 22 Jun 2015, Published online: 24 Jul 2015

References

  • Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000;50:27–46.10.1016/S0939-6411(00)00090-4
  • Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem. Rev. 2001;101:1869–1880.10.1021/cr000108x
  • Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials. 2007;28:134–146.10.1016/j.biomaterials.2006.09.017
  • Ladewig K, Abberton K, O’Connor A. Designing in vivo bioreactors for soft tissue engineering. J. Biomater. Tissue Eng. 2012;2:1–13.10.1166/jbt.2012.1028
  • Chiu YC, Cheng MH, Engel H, et al. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials. 2011;32:6045–6051.
  • Raic A, Rödling L, Kalbacher H, Lee-Thedieck C. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials. 2014;35:929–940.10.1016/j.biomaterials.2013.10.038
  • Li Z, Cui Z. Three-dimensional perfused cell culture. Biotechnol. Adv. 2014;32:243–254.10.1016/j.biotechadv.2013.10.006
  • Huang X, Zhang Y, Donahue HJ, Lowe TL. Porous thermoresponsive-co-biodegradable hydrogels as tissue-engineering scaffolds for 3-dimensional in vitro culture of chondrocytes. Tissue Eng. 2007;13:2645–2652.10.1089/ten.2007.0084
  • Stachowiak AN, Bershteyn A, Tzatzalos E, Irvine DJ. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv. Mater. 2005;17:399–403.10.1002/(ISSN)1521-4095
  • Omidian H, Rocca JG, Park K. Advances in superporous hydrogels. J. Controlled Release. 2005;102:3–12.10.1016/j.jconrel.2004.09.028
  • Chen J, Park H, Park K. Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J. Biomed. Mater. Res. 1999;44:53–62.10.1002/(ISSN)1097-4636
  • Tokuyama H, Kanehara A. Novel synthesis of macroporous poly( N- isopropylacrylamide) hydrogels using oil-in-water emulsions. Langmuir. 2007;23:11246–11251.10.1021/la701492u
  • Barry RA, Shepherd RF, Hanson JN, Nuzzo RG, Wiltzius P, Lewis JA. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater. 2009;21:2407–2410.10.1002/adma.v21:23
  • Plieva FM, Karlsson M, Aguilar M-R, Gomez D, Mikhalovsky S, Galaev IY. Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter. 2005;1:303–309.10.1039/b510010k
  • Lozinsky V, Plieva F, Galaev I, Mattiasson B. The potential of polymeric cryogels in bioseparation. Bioseparation. 2001;10:163–188.10.1023/A:1016386902611
  • Lozinsky VI, Vainerman ES, Titova EF, Belavtseva EM, Rogozhin SV. Study of cryostructurization of polymer systems. Colloid. Polym. Sci. 1984;262:769–774.10.1007/BF01451705
  • Henderson TMA, Ladewig K, Haylock DN, McLean KM, O’Connor AJ. Cryogels for biomedical applications. J. Mater. Chem. B. 2013;1:2682–2695.10.1039/c3tb20280a
  • Bölgen N, Yang Y, Korkusuz P, Güzel E, El Haj AJ, Pişkin E. Three-dimensional ingrowth of bone cells within biodegradable cryogel scaffolds in bioreactors at different regimes. Tissue Eng. Part A. 2008;14:1743–1750.10.1089/ten.tea.2007.0277
  • Inci I, Kirsebom H, Galaev IY, Mattiasson B, Piskin E. Gelatin cryogels crosslinked with oxidized dextran and containing freshly formed hydroxyapatite as potential bone tissue-engineering scaffolds. J. Tissue Eng. Regen. Med. 2012;7:584–588.
  • Bölgen N, Yang Y, Korkusuz P, Güzel E, El Haj AJ, Pişkin E. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 2011;5:770–779.10.1002/term.v5.10
  • Bhat S, Tripathi A, Kumar A. Supermacroprous chitosan-agarose-gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering. J. R. Soc. Interface. 2011;8:540–554.10.1098/rsif.2010.0455
  • Jurga M, Dainiak MB, Sarnowska A, et al. The performance of laminin-containing cryogel scaffolds in neural tissue regeneration. Biomaterials. 2011;32:3423–3434.10.1016/j.biomaterials.2011.01.049
  • Dainiak MB, Allan IU, Savina IN, et al. Gelatin–fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials. 2010;31:67–76.10.1016/j.biomaterials.2009.09.029
  • Ladewig K. Drug delivery in soft tissue engineering. Expert Opin. Drug Deliv. 2011;8:1175–1188.10.1517/17425247.2011.588698
  • Pardue EL, Ibrahim S, Ramamurthi A. Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis. 2008;4:203–214.10.4161/org.4.4.6926
  • Tsung LH, Chang Kun-Hung, Chen Jyh Ping. Osteogenesis of adipose-derived stem cells on three-dimensional, macroporous gelatin–hyaluronic acid cryogels. Biomed. Eng. App. Basis Commun. 2011;23:127–133.10.4015/S1016237211002463
  • Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials. 2002;23:1205–1212.10.1016/S0142-9612(01)00235-6
  • Yan S, Zhang Q, Wang J, et al. Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomater. 2013;9:6771–6782.10.1016/j.actbio.2013.02.016
  • Lu PL, Lai JY, Ma DHK, Hsiue GH. Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells. J. Biomater. Sci., Polym. Ed. 2008;19:1–18.10.1163/156856208783227695
  • Minaberry Y, Chiappetta DA, Sosnik A, Jobbágy M. Micro/nanostructured hyaluronic acid matrices with tuned swelling and drug release properties. Biomacromolecules. 2013;14:1–9.10.1021/bm300814h
  • Freudenberg U, Hermann A, Welzel PB, et al. A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials. 2009;30:5049–5060.10.1016/j.biomaterials.2009.06.002
  • Jia X, Colombo G, Padera R, Langer R, Kohane D. Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials. 2004;25:4797–4804.10.1016/j.biomaterials.2003.12.012
  • Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011;23:H41–H56.10.1002/adma.201003963
  • Ladam G, Vonna L, Sackmann E. Micromechanics of surface-grafted hyaluronic acid gels. J. Phys. Chem. B. 2003;107:8965–8971.10.1021/jp0272872
  • Dinu MV, Ozmen MM, Dragan ES, Okay O. Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer. 2007;48:195–204.10.1016/j.polymer.2006.11.022
  • Chiu Y-C, Larson JC, Isom A, Brey EM. Generation of porous poly(ethylene glycol) hydrogels by salt leaching. Tissue Eng. Part C: Methods. 2010;16: 905–912.10.1089/ten.tec.2009.0646
  • Bryant SJ, Cuy JL, Hauch KD, Ratner BD. Photo-patterning of porous hydrogels for tissue engineering. Biomaterials. 2007;28:2978–2986.10.1016/j.biomaterials.2006.11.033
  • Annabi N, Nichol J, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B: Reviews. 2010;16:371–383.10.1089/ten.teb.2009.0639
  • Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7:557–572.10.1089/107632701753213183
  • Ivanov RV, Lozinsky VI, Noh SK, Lee YR, Han SS, Lyoo WS. Preparation and characterization of polyacrylamide cryogels produced from a high-molecular-weight precursor. II. The influence of the molecular weight of the polymeric precursor. J. Appl. Polym. Sci. 2008;107:382–390.10.1002/(ISSN)1097-4628
  • Savina IN, Dainiak M, Jungvid H, Mikhalovsky SV, Galaev IY. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold. J. Biomater. Sci., Polym. Ed. 2009;20:1781–1795.10.1163/156856208X386390
  • Reichelt S, Becher J, Weisser J, et al. Biocompatible polysaccharide-based cryogels. Mat. Sci. Eng. C. 2014;35:164–170.10.1016/j.msec.2013.10.034
  • Kathuria N, Tripathi A, Kar KK, Kumar A. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomater. 2009;5:406–418.10.1016/j.actbio.2008.07.009
  • Kostova B, Momekova D, Petrov P, et al. Poly(ethoxytriethyleneglycol acrylate) cryogels as novel sustained drug release systems for oral application. Polymer. 2011;52:1217–1222.10.1016/j.polymer.2011.01.049
  • Petrov P, Pavlova S, Tsvetanov CB, Topalova Y, Dimkov R. In situ entrapment of urease in cryogels of poly(N-isopropylacrylamide): an effective strategy for noncovalent immobilization of enzymes. J. Appl. Polym. Sci. 2011;122:1742–1748.10.1002/app.34063
  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689.10.1016/j.cell.2006.06.044
  • Cameron A, Frith J, Cooper White J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials. 2011;32:5979–5993.
  • Xin X, Borzacchiello A, Netti PA, Ambrosio L, Nicolais L. Hyaluronic-acid-based semi-interpenetrating materials. J. Biomater. Sci., Polym. Ed. 2004;15:1223–1236.10.1163/1568562041753025
  • Liu Y, Gan L, Carlsson D, et al. A simple, cross-linked collagen tissue substitute for corneal implantation. Invest. Ophthalmol. Visual Sci. 2006;47:1869–1875.10.1167/iovs.05-1339
  • Lai, J-Y. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. J. Mater. Sci. Mater. Med. 2010;21:1899–1911.10.1007/s10856-010-4035-3
  • Gurski LA, Jha AK, Zhang C, Jia X, Farach-Carson MC. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials. 2009;30:6076–6085.10.1016/j.biomaterials.2009.07.054
  • Khetan S, Katz JS, Burdick JA. Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Matter. 2009;5:1601–1606.10.1039/b820385g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.