436
Views
8
CrossRef citations to date
0
Altmetric
Articles

Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials

, , &
Pages 351-369 | Received 07 Oct 2015, Accepted 08 Dec 2015, Published online: 12 Jan 2016

References

  • Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210:908–910.10.1126/science.6776628
  • Yasuhara T, Shingo T, Muraoka K, et al. Neurorescue effects of VEGF on a rat model of Parkinson’s disease. Brain Res. 2005;1053:10–18.10.1016/j.brainres.2005.05.027
  • Ross CJD, Bastedo L, Maier SA, et al. Treatment of a lysosomal storage disease, mucopolysaccharidosis VII, with microencapsulated recombinant cells. Hum. Gene Ther. 2000;11:2117–2127.10.1089/104303400750001426
  • Thu B, Bruheim P, Espevik T, et al. Alginate polycation microcapsules I. Interaction between alginate and polycation. Biomaterials. 1996;17:1031–1040.
  • Goosen MFA, O’Shea GM, Gharapetian HM, et al. Optimization of microencapsulation parameters: semipermeable microcapsules as a bioartificial pancreas. Biotechnol. Bioeng. 1985;27:146–150.10.1002/(ISSN)1097-0290
  • Saitoh S, Araki Y, Kon R, et al. Swelling/deswelling mechanism of calcium alginate gel in aqueous solutions. Dent. Mater. J. 2000;19:396–404.10.4012/dmj.19.396
  • Mørch YA, Donati I, Strand BL, et al. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006;7:1471–1480.10.1021/bm060010d
  • Wang X, Garth Spencer HG. Calcium alginate gels: formation and stability in the presence of an inert electrolyte. Polymer. 1998;39:2759–2764.10.1016/S0032-3861(97)00597-1
  • Strand BL, Ryan L, In’t Veld P, et al. Poly-L-lysine induces fibrosis on alginate microcapsules via the induction of ctytokines. Cell Transplant. 2001;10:263–275.
  • Juste S, Lessard M, Henley N, et al. Effect of poly-L-lysine coating on macrophage activation by alginate-based microcapsules: assessment using a new in vitro method. J. Biomed. Mater Res. 2005;72A:389–398.10.1002/(ISSN)1552-4965
  • Rokstad AM, Brekke OL, Steinkjer B, et al. Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model. Acta Biomater. 2011;7:2566–2578.10.1016/j.actbio.2011.03.011
  • De Vos P, De Haan B, Van Schilfgaarde R. Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials. 1997;18:273–278.10.1016/S0142-9612(96)00135-4
  • Tam SK, de Haan BJ, Faas MM, et al. Adsorption of human immunoglobulin to implantable alginate-poly-L-lysine microcapsules: effect of microcapsule composition. J. Biomed. Mater. Res. 2009;89A:609–615.10.1002/jbm.a.v89a:3
  • Tam SK, Dusseault J, Polizu S, et al. Physicochemical model of alginate–poly-L-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials. 2005;26:6950–6961.10.1016/j.biomaterials.2005.05.007
  • Tam SK, Bilodeau S, Dusseault J, et al. Biocompatibility and physicochemical characteristics of alginate-polycation microcapsules. Acta Biomater. 2011;7:1683–1692.10.1016/j.actbio.2010.12.006
  • Rokstad AM, Holtan S, Strand BL, et al. Microencapsulation of cells producing therapeutic proteins: optimizing cell growth and secretion. Cell Transplant. 2002;11:313–324.
  • Gardner CM, Potter MA, Stöver HDH. Improving covalent cell encapsulation with temporarily reactive polyelectrolytes. J. Mater. Sci.: Mater. Med. 2012; 23:181–193.
  • Sawhney AS, Hubbell JA. Poly(ethylene oxide)-graft-poly(L-lysine) copolymers to enhance the biocompatibility of poly(L-lysine)-alginate microcapsule membranes. Biomaterials. 1992;13:863–870.10.1016/0142-9612(92)90180-V
  • Wilson JT, Krishnamurthy VR, Cui W, et al. Noncovalent cell surface engineering with cationic graft copolymers. J. Am. Chem. Soc. 2009;131:18228–18229.10.1021/ja908887v
  • Wilson JT, Cui W, Kozlovskaya V, et al. Cell surface engineering with polyelectrolyte multilayer thin films. J. Am. Chem. Soc. 2011;133:7054–7064.10.1021/ja110926s
  • Spasojevic M, Paredes-Juarez GA, Vorenkamp J, et al. Reduction of the inflammatory responses against alginate-poly-L-lysine microcapsules by anti-biofouling surfaces of PEG-b-PLL diblock copolymers. PLoS ONE [Internet]. 2014 [cited 2015 Sept 28]; 9.Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109837
  • Sung HJ, Luk A, Murthy NS, et al. Poly(ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms. Soft Matter. 2010;6:5196–5205.10.1039/c0sm00172d
  • Ishida T, Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 2008;354:56–62.10.1016/j.ijpharm.2007.11.005
  • Knop K, Hoogenboom R, Fischer D, et al. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 2010;49:6288–6308.10.1002/anie.200902672
  • Kopeček J, Šprincl L, Lím D. New types of synthetic infusion solutions. I. Investigation of the effect of solutions of some hydrophillic polymers on blood. J. Biomed. Mater. Res. 1973;7:179–191.10.1002/(ISSN)1097-4636
  • Kopeček J, Kopečková P. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149.10.1016/j.addr.2009.10.004
  • Scales CW, Vasilieva YA, Convertine AJ, et al. Direct, controlled synthesis of the nonimmunogenic, hydrophilic polymer, poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in aqueous media. Biomacromolecules. 2005;6:1846–1850.10.1021/bm0503017
  • Alidedeoglu AH, York AW, Rosado DA, et al. Bioconjugation of D-glucuronic acid sodium salt to well-defined primary amine-containing homopolymers and block copolymers. J. Polym. Sci., Part A: Polym. Chem. 2010;48:3052–3061.10.1002/pola.v48:14
  • York AW, Zhang Y, Holley AC, et al. Facile synthesis of multivalent folate-block copolymer conjugates via aqueous RAFT polymerization: targeted delivery of siRNA and subsequent gene suppression. Biomacromolecules. 2009;10:936–943.10.1021/bm8014768
  • Goujon LJ, Hariharan S, Sayyar B, et al. Tunable hydrogel thin films from reactive synthetic polymers as potential two-dimensional cell scaffolds. Langmuir. 2015;31:5623–5632.10.1021/acs.langmuir.5b00376
  • Irwin EF, Gupta R, Dashti DC, et al. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials. 2011;32:6912–6919.10.1016/j.biomaterials.2011.05.058
  • Paslay LC, Abel BA, Brown TD, et al. Antimicrobial poly(methacrylamide) derivatives prepared via aqueous RAFT polymerization exhibit biocidal efficiency dependent upon cationic structure. Biomacromolecules. 2012;13:2472–2482.10.1021/bm3007083
  • Morgan DM, Clover J, Pearson JD. Effect of synthetic polycations on leucine incorporation, lactate dehydrogenase release, and morphology of human umbilical vein endothelial cells. J. Cell Sci. 1988;91:231–238.
  • Choksakulnimitr S, Masuda S, Tokuda H, et al. In vitro cytotoxicity of macromolecules in different cell culture systems. J. Control. Release. 1995;34:233–241.10.1016/0168-3659(95)00007-U
  • Gugerli R, Cantana E, Heinzen C, et al. Quantitative study of the production and properties of alginate/poly-L-lysine microcapsules. J. Microencapsul. 2002;19:571–590.10.1080/02652040210140490
  • Ma X, Vacek I, Sun A. Generation of alginate-poly-L-lysine-alginate (APA) biomicrocapsules: the relationship between the membrane strength and the reaction conditions. Artif. Cells, Blood Sub. Biotechnol. 1994;22:43–69.10.3109/10731199409117399
  • Moad G, Chiefari J, Chong YK, et al. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym. Int. 2000;49:993–1001.10.1002/(ISSN)1097-0126
  • Kleinberger RM, Burke NAD, Dalnoki-Veress K, et al. Systematic study of alginate-based microcapsules by micropippette aspiration and confocal fluorescence microscopy. Mater. Sci. Eng. C. 2013;33:4295–4304.10.1016/j.msec.2013.06.033
  • Ahmed M, Narain R. The effect of polymer architecture, composition, and molecular weight on the properties of glycopolymer-based non-viral gene delivery systems. Biomaterials. 2011;32:5279–5290.10.1016/j.biomaterials.2011.03.082
  • Deng Z, Bouchékif H, Babooram K, et al. Facile synthesis of controlled-structure primary amine-based methacrylamide polymers via the reversible addition-fragmentation chain transfer process. J. Polym. Sci., Part A: Polym. Chem. 2008;46:4984–4996.10.1002/(ISSN)1099-0518
  • Li Y, Lokitz BS, McCormick CL. Thermally responsive vesicles and their structural “locking” through polyelectrolyte complex formation. Angew. Chem. Int. Ed. 2006;45:5792–5795.10.1002/(ISSN)1521-3773
  • Thomas DB, Convertine AJ, Hester RD, et al. Hydrolytic susceptibility of dithioester chain treansfer agents and implications in aqueous RAFT polymerizations. Macromolecules. 2004;37:1735–1741.10.1021/ma035572t
  • Liu G, Shi H, Cui Y, et al. Toward rapid aqueous RAFT polymerization of primary amine functional monomer under visible light irradiation at 25°C. Polym. Chem. 2013;4:1176–1182.10.1039/C2PY20810E
  • Pissuwan D, Boyer C, Gunasekaran K, et al. In vitro cytotoxicity of RAFT polymers. Biomacromolecules. 2010;11:412–420.10.1021/bm901129x
  • Bartkowiak A, Hunkeler D. Alginate−Oligochitosan microcapsules: a mechanistic study relating membrane and capsule properties to reaction conditions. Chem. Mater. 1999;11:2486–2492.10.1021/cm9910456
  • Strand BL, Mørch YA, Espevik T, et al. Visualization of alginate-poly-L-lysine-alginate microcapsules by confocal laser scanning microscopy. Biotechnol. Bioeng. 2003;82:386–394.10.1002/(ISSN)1097-0290
  • Gåserød O, Smidsrød O, Skjåk-Bræk G. Microcapsules of alginate-chitosan I. A quantitative study of the interaction between alginate and chitosan. Biomaterials. 1998;19:1815–1825.10.1016/S0142-9612(98)00073-8
  • Gåserød O, Sannes A, Skjåk-Bræk G. Microcapsules of alginate-chitosan II. A study of capsule stability ad permeability. Biomaterials. 1999;20:773–783.10.1016/S0142-9612(98)00230-0
  • Bysell H, Malmsten M. Interactions between homopolypeptides and lightly cross-linked microgels. Langmuir. 2009;25:522–528.10.1021/la8029984
  • Sgouras D, Duncan R. Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1-use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity. J. Mater. Sci.: Mater. Med. 1990;1:61–68.
  • Fischer D, Li Y, Ahlemeyer B, et al. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24:1121–1131.10.1016/S0142-9612(02)00445-3
  • Schneider BL, Schwenter F, Pralong WF, et al. Prevention of the initial host immuno-inflammatory response determines the long-term survival of encapsulated myoblasts genetically engineered for erythropoietin delivery. Mol. Ther. 2003;7:506–514.10.1016/S1525-0016(03)00055-8
  • Li RH, Williams S, Burkstrand M, et al. Encapsulation matrices for neurotrophic factor-secreting myoblast cells. Tissue Eng. 2000;6:151–163.10.1089/107632700320775
  • Singh AK, Kasinath BS, Lewis EJ. Interaction of polycations with cell-surface negative charges of epithelial cells. Biochim. Biophys. Acta. 1992;1120:337–342.10.1016/0167-4838(92)90257-E
  • McKeehan WL, Ham RG. Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers. J. Cell Biol. 1976;71:727–734.10.1083/jcb.71.3.727
  • Fairbanks BD, Thissen H, Maurdev G, et al. Inhibition of protein and cell attachment on materials generated from N-(2-Hydroxypropyl)acrylamide. Biomacromolecules. 2014;15:3259–3266.10.1021/bm500654q
  • Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. J. Biomed. Mater. Res. 1994;28:783–789.10.1002/(ISSN)1097-4636
  • Ishihara K, Kitagawa T, Inoue Y. Initial cell adhesion on well-defined surface by polymer brush layer with varying chemical structures. ACS Biomater. Sci. Eng. 2015;1:103–109.10.1021/ab500048w
  • Brafman DA, Chang CW, Fernandez A, et al. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials. 2010;31:9135–9144.10.1016/j.biomaterials.2010.08.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.