517
Views
71
CrossRef citations to date
0
Altmetric
Review Article

Dendrimer-mediated approaches for the treatment of brain tumor

, , , , , & show all
Pages 557-580 | Received 29 Sep 2015, Accepted 15 Dec 2015, Published online: 29 Feb 2016

References

  • WHO. New guide on palliative care services for people living with advanced cancer, http://www.who.int/mediacentre/news/notes/2007/np31/en/.
  • Thakur S, Kesharwani P, Tekade RK, et al. Impact of pegylation on biopharmaceutical properties of dendrimers. Polymer. 2015;59:67–92.10.1016/j.polymer.2014.12.051
  • Kesharwani P, Mishra V, Jain NK. Validating the anticancer potential of carbon nanotube-based therapeutics through cell line testing. Drug Discovery Today. 2015;20:1049–1060.10.1016/j.drudis.2015.05.004
  • Kesharwani P, Ghanghoria R, Jain NK. Carbon nanotube exploration in cancer cell lines. Drug Discovery Today. 2012;17:1023–1030.10.1016/j.drudis.2012.05.003
  • Dolecek TA, Propp JM, Stroup NE, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology. 2012;14(Suppl 5):v1–v49.10.1093/neuonc/nos218
  • Wen PY, Kesari S. Malignant gliomas in adults. N. Engl. J. Med. 2008;359:492–507.10.1056/NEJMra0708126
  • DeAngelis LM. Brain tumors. N. Engl. J. Med. 2001;344:114–123.10.1056/NEJM200101113440207
  • Scheithauer BW. Development of the WHO classification of tumors of the central nervous system: a historical perspective. Brain Pathol. 2009;19:551–564.10.1111/bpa.2009.19.issue-4
  • Krex D, Klink B, Hartmann C, et al. Long-term survival with glioblastoma multiforme. Brain. 2007;130:2596–2606.10.1093/brain/awm204
  • Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996.10.1056/NEJMoa043330
  • Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discovery Today. 2015;20:536–547.10.1016/j.drudis.2014.12.012
  • Mubita L, Kalkanis SN. Chapter 7 – The role of chemotherapy in metastatic brain tumors. brain metastases from primary tumors, Epidemiology, Biology, and Therapy. 2014; 75–80. doi:10.1016/B978-0-12-800896-6.00007-3.
  • Alam MI, Beg S, Samad A, et al. Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 2010;40:385–403.10.1016/j.ejps.2010.05.003
  • Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discovery Today. 2008;13:1099–1106.10.1016/j.drudis.2008.09.005
  • Freitas RA. What is nanomedicine? Nanomed. Nanotechnol. Biol. Med. 2005;1:2–9.10.1016/j.nano.2004.11.003
  • Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr. Opin. Biotechnol. 2007;18:26–30.10.1016/j.copbio.2007.01.006
  • Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol. Pharm. 2011;8:2101–2141.10.1021/mp200394t
  • Jaracz S, Chen J, Kuznetsova LV, et al. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem. 2005;13:5043–5054.10.1016/j.bmc.2005.04.084
  • Cheng Y, Morshed RA, Auffinger B, et al. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv. Drug Delivery Rev. 2014;66:42–57.10.1016/j.addr.2013.09.006
  • Singh R, Kesharwani P, Mehra NK, et al. Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev. Ind. Pharm. 2015;41:1888–1901.10.3109/03639045.2015.1019355
  • Kothule KU, Kesharwani P, Gidwani SK, et al. Development and characterization of chitosan nanoparticles and improvement of oral bioavailability of poorly water soluble acyclovir. Res. J. Pharm. Technol. 2010;3:1241–1245.
  • Zucchetti M, Boiardi A, Silvani A, et al. Distribution of daunorubicin and daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother. Pharmacol. 1999;44:173–176.10.1007/s002800050964
  • Thigpen JT, Aghajanian CA, Alberts DS, et al. Role of pegylated liposomal doxorubicin in ovarian cancer. Gynecol. Oncol. 2005;96:10–18.10.1016/j.ygyno.2004.09.046
  • Dande P, Prakash TP, Sioufi N, et al. Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J. Med. Chem. 2006;49:1624–1634.10.1021/jm050822c
  • Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem. Rev. 2009;109:49–87.10.1021/cr068212n
  • Akhter S, Ahmad I, Ahmad MZ, et al. Nanomedicines as cancer therapeutics: current status. Curr. Cancer Drug Targets 2013;13:362–378.10.2174/1568009611313040002
  • Mignani S, El Kazzouli S, Bousmina M, et al. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv. Drug Delivery Rev. 2013;65:1316–1330.10.1016/j.addr.2013.01.001
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014;39:268–307.10.1016/j.progpolymsci.2013.07.005
  • Kesharwani P, Tekade RK, Jain NK. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Biomaterials. 2014;35:5539–5548.10.1016/j.biomaterials.2014.03.064
  • Kesharwani P, Tekade RK, Jain NK. Dendrimer generational nomenclature: the need to harmonize. Drug Discovery Today. 2015;20:497–499.10.1016/j.drudis.2014.12.015
  • Birdhariya B, Kesharwani P, Jain NK. Effect of surface capping on targeting potential of folate decorated poly (propylene imine) dendrimers. Drug Dev. Ind. Pharm. 2015;41:1393–1399.10.3109/03639045.2014.954584
  • Kesharwani P, Mishra V, Jain NK. Generation dependent hemolytic profile of folate engineered poly(propyleneimine) dendrimer. J. Drug Delivery Sci. Technol. 2015;28:1–6.10.1016/j.jddst.2015.04.006
  • Kesharwani P, Tekade RK, Gajbhiye V, et al. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomed. Nanotechnol. Biol. Med. 2011;7:295–304.10.1016/j.nano.2010.10.010
  • Kesharwani P, Gajbhiye V, Tekade RK, et al. Evaluation of dendrimer safety and efficacy through cell line studies. Curr. Drug Targets. 2011;12:1478–1497.10.2174/138945011796818135
  • Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials. 2012;33:7138–7150.10.1016/j.biomaterials.2012.06.068
  • Ihre H, Padilla De Jesús OL, Fréchet JM. Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling. J. Am. Chem. Soc. 2001;123:5908–5917.10.1021/ja010524e
  • Malik N, Wiwattanapatapee R, Klopsch R,et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Controlled Release. 2000;65:133–148.10.1016/S0168-3659(99)00246-1
  • Jain K, Kesharwani P, Gupta U, et al. Dendrimer toxicity: let’s meet the challenge. Int. J. Pharm. 2010;394:122–142.10.1016/j.ijpharm.2010.04.027
  • Jain K, Kesharwani P, Gupta U, et al. A review of glycosylated carriers for drug delivery. Biomaterials. 2012;33:4166–4186.10.1016/j.biomaterials.2012.02.033
  • Kesharwani P, Tekade RK, Jain NK. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm. Res. 2015;32:1438–1450.10.1007/s11095-014-1549-2
  • Kesharwani P. Effect of generation G on cancer targeting propensity of PPI dendrimer. LAP Lambert Academic Publishing; 2015, ISBN-13: 978-3-8443-9285-2.
  • Kesharwani P. Relative study of cancer targeting potential of engineered dendrimer. LAP Lambert Academic Publishing; 2015, ISBN- 13: 978-3-659-51741-9.
  • Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv. Drug Delivery Rev. 2005;57:2215–2237.10.1016/j.addr.2005.09.019
  • Fréchet JMJ, Hawker CJ, Gitsov I, et al. Dendrimers and hyperbranched polymers: two families of three-dimensional macromolecules with similar but clearly distinct properties. J. Macromol. Sci. Part A. 2006;33:1399–1425.
  • Ihre HR, Padilla De Jesús OL, Szoka FC, et al. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjugate Chem. 13:443–452.
  • Islam MT, Majoros IJ, Baker JR. HPLC analysis of PAMAM dendrimer based multifunctional devices. J. Chromatogr. B. 2005;822:21–26.10.1016/j.jchromb.2005.05.001
  • Kesharwani P, Xie L, Banerjee S, et al. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf. B. 2015;136:413–423.10.1016/j.colsurfb.2015.09.043
  • de Brabander-van den Berg EMM, Meijer EW. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew. Chemie. Int. Ed. English. 1993;32:1308–1311.
  • Biricova V, Laznickova A. Dendrimers: analytical characterization and applications. Bioorg. Chem. 2009;37:185–192.10.1016/j.bioorg.2009.07.006
  • Caminade A, Laurent R, Majoral J. Characterization of dendrimers. Adv. Drug Delivery Rev.. 2005;57:2130–2146.10.1016/j.addr.2005.09.011
  • Li J, Piehler LT, Qin D, et al. Visualization and characterization of poly(amidoamine) dendrimers by atomic force microscopy. Langmuir. 2000;16:5613–5616.10.1021/la000035c
  • Stöckigt D, Lohmer G, Belder D. Separation and identification of basic dendrimers using capillary electrophoresis on-line coupled to a sector mass spectrometer. Rapid Commun. Mass Spectrom. 1996;10:521–526.10.1002/(ISSN)1097-0231
  • Nourse A, Millar DB, Minton AP. Physicochemical characterization of generation 5 polyamidoamine dendrimers. Biopolymers. 2000;53:316–328.10.1002/(ISSN)1097-0282
  • Gajbhiye V, Vijayaraj Kumar P, Tekade RK, et al. PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. Eur. J. Med. Chem. 2009;44:1155–1166.10.1016/j.ejmech.2008.06.012
  • Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Delivery Rev. 2008;60:1037–1055.10.1016/j.addr.2008.02.012
  • Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs. 1999;10:767–776.10.1097/00001813-199909000-00010
  • Kojima C, Kono K, Maruyama K, et al. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjugate Chem. 11:910–917.
  • Bhadra D, Bhadra S, Jain S, et al. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm. 2003;257:111–124.10.1016/S0378-5173(03)00132-7
  • Ooya T, Lee J, Park K. Hydrotropic dendrimers of generations 4 and 5: synthesis, characterization, and hydrotropic solubilization of paclitaxel. Bioconjugate Chem. 15:1221–1229
  • Kesharwani P, Tekade RK, Jain NK. Formulation development and in vitro–in vivo assessment of the fourth-generation PPI dendrimer as a cancer-targeting vector. Nanomedicine. 2014;9:2291–2308.10.2217/nnm.13.210
  • Kannan RM, Nance E, Kannan S, et al. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J. Intern. Med. 2014;276:579–617.10.1111/joim.2014.276.issue-6
  • Iyer AK, Duan Z, Amiji MM. Nanodelivery systems for nucleic acid therapeutics in drug resistant tumors. Mol. Pharm. 2014;11:2511–2526.10.1021/mp500024p
  • Iyer AK, Khaled G, Fang J, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today. 2006;11:812–818.10.1016/j.drudis.2006.07.005
  • Islam T, Josephson L. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark. 2009;5:99–107.
  • Teow Y, Valiyaveettil S. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale. 2010;2:2607–2613.10.1039/c0nr00204f
  • Thakur S, Tekade RK, Kesharwani P, et al. The effect of polyethylene glycol spacer chain length on the tumor-targeting potential of folate-modified PPI dendrimers. J. Nanopart. Res. 2013;15:1625. doi:10.1007/s11051-013-1625-210.1007/s11051-013-1625-2
  • Duncan R. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs. 1992;3:175–210.10.1097/00001813-199206000-00001
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392.
  • Padilla De Jesús OL, Ihre HR, Gagne L, et al. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chem. 13:453–461.
  • Gillies ER, Frechet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today. 2005;10:35–43.10.1016/S1359-6446(04)03276-3
  • Greish K, Fang J, Inutsuka T, et al. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin. Pharmacokinet. 2003;42:1089–1105.10.2165/00003088-200342130-00002
  • Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Controlled Release. 2001;74:47–61.10.1016/S0168-3659(01)00309-1
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release. 2000;65:271–284.10.1016/S0168-3659(99)00248-5
  • Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 2009;26:523–580.10.1615/CritRevTherDrugCarrierSyst.v26.i6
  • Shcharbina N, Shcharbin D, Bryszewska M. Nanomaterials in stroke treatment: perspectives. Stroke. 2013;44:2351–2355.10.1161/STROKEAHA.113.001298
  • Kesharwani P, Banerjee S, Padhye S, et al. Parenterally administrable nano-micelles of 3,4-difluorobenzylidene curcumin for treating pancreatic cancer. Colloids Surf. B Biointerfaces. 2015;132:138–145.10.1016/j.colsurfb.2015.05.007
  • Etrych T, Chytil P, Mrkvan T, et al. Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J. Controlled Release. 2008;132:184–192.10.1016/j.jconrel.2008.04.017
  • Etrych T, Strohalm J, Chytil P, et al. Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. Eur. J. Pharm. Sci. 2011;42:527–539.10.1016/j.ejps.2011.03.001
  • She W, Li N, Luo K, et al. Dendronized heparin−doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials. 2013;34:2252–2264.10.1016/j.biomaterials.2012.12.017
  • Kaminskas LM, Boyd BJ, Porter CJH. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine. 2011;6:1063–1084.10.2217/nnm.11.67
  • Basile L, Pignatello R, Passirani C. Active targeting strategies for anticancer drug nanocarriers. Curr. Drug Delivery. 2012;9:255–268.10.2174/156720112800389089
  • Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of atp-dependent transporters. Nat. Rev. Cancer. 2002;2:48–58.10.1038/nrc706
  • Jain RK. Barriers to drug delivery in solid tumors. Sci. Am. 1994;271:58–65.10.1038/scientificamerican0794-58
  • Shen M, Huang Y, Han L, et al. Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. J. Controlled Release. 2012;161:884–892.10.1016/j.jconrel.2012.05.013
  • Li Q, Xu W. Novel anticancer targets and drug discovery in post genomic age. Curr. Med. Chem. Anticancer Agents. 2005;5:53–63.10.2174/1568011053352631
  • Zhang L, Zhu S, Qian L, et al. RGD-modified PEG–PAMAM–DOX conjugates: in vitro and in vivo studies for glioma. Eur. J. Pharm. Biopharm. 2011;79:232–240.10.1016/j.ejpb.2011.03.025
  • Gupta U, Dwivedi SKD, Bid HK, et al. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. Int. J. Pharm. 2010;393:185–196.
  • Lockman PR, Oyewumi MO, Koziara JM, et al. Brain uptake of thiamine-coated nanoparticles. J. Controlled Release. 2003;93:271–282.10.1016/j.jconrel.2003.08.006
  • Ulbrich K, Knobloch T, Kreuter J. Targeting the insulin receptor: nanoparticles for drug delivery across the blood-brain barrier (BBB). J. Drug Target. 2011;19:125–132.10.3109/10611861003734001
  • Huang R, Ke W, Liu Y, et al. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials. 2008;29:238–246.10.1016/j.biomaterials.2007.09.024
  • Pettit MW, Griffiths P, Ferruti P, et al. Poly(amidoamine) polymers: soluble linear amphiphilic drug-delivery systems for genes, proteins and oligonucleotides. Ther. Delivery. 2011;2:907–917.10.4155/tde.11.55
  • Qin W, Yang K, Tang H, et al. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf. B. 2011;84:206–213.10.1016/j.colsurfb.2011.01.001
  • Patri AK, Kukowskalatallo JF, Bakerjr JR. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Delivery Rev. 2005;57:2203–2214.10.1016/j.addr.2005.09.014
  • McCarthy TD, Karellas P, Henderson SA, et al. Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm. 2:312–318.
  • Sk UH, Dixit D, Sen E. Comparative study of microtubule inhibitors – estramustine and natural podophyllotoxin conjugated PAMAM dendrimer on glioma cell proliferation. Eur. J. Med. Chem. 2013;68:47–57.10.1016/j.ejmech.2013.07.007
  • Bai CZ, Choi S, Nam K, et al. Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glioma. Int. J. Pharm. 2013;445:79–87.10.1016/j.ijpharm.2013.01.057
  • Teow HM, Zhou Z, Najlah M, et al. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier. Int. J. Pharm. 2013;441:701–711.10.1016/j.ijpharm.2012.10.024
  • He H, Li Y, Jia X-R, et al. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials. 2011;32:478–487.10.1016/j.biomaterials.2010.09.002
  • Li Y, He H, Jia X, et al. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33:3899–3908.10.1016/j.biomaterials.2012.02.004
  • Li M-H, Choi SK, Thomas TP, et al. Dendrimer-based multivalent methotrexates as dual acting nanoconjugates for cancer cell targeting. Eur. J. Med. Chem. 2012;47:560–572.10.1016/j.ejmech.2011.11.027
  • Yang W, Cheng Y, Xu T, et al. Targeting cancer cells with biotin-dendrimer conjugates. Eur. J. Med. Chem. 2009;44:862–868.10.1016/j.ejmech.2008.04.021
  • Hui H, Xiao-dong F, Zhong-lin C. Thermo- and pH-sensitive dendrimer derivatives with a shell of poly(N,N-dimethylaminoethyl methacrylate) and study of their controlled drug release behavior. Polymer. 2005;46:9514–9522.10.1016/j.polymer.2005.07.034
  • Zhao J, Zhang B, Shen S, et al. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J. Colloid Interface Sci. 2015;450:396–403.10.1016/j.jcis.2015.03.019
  • Zhang F, Mastorakos P, Mishra MK, et al. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers. Biomaterials. 2015;52:507–516.10.1016/j.biomaterials.2015.02.053
  • Mishra V, Gupta U, Jain NK. Surface-engineered dendrimers: a solution for toxicity issues. J. Biomater. Sci. Polym. Ed. 2009;20:141–166.10.1163/156856208X386246
  • Wang F, Cai X, Su Y, et al. Reducing cytotoxicity while improving anti-cancer drug loading capacity of polypropylenimine dendrimers by surface acetylation. Acta Biomater. 2012;8:4304–4313.10.1016/j.actbio.2012.07.031
  • Sideratou Z, Kontoyianni C, Drossopoulou GI, et al. Synthesis of a folate functionalized PEGylated poly(propylene imine) dendrimer as prospective targeted drug delivery system. Bioorg. Med. Chem. Lett. 2010;20:6513–6517.10.1016/j.bmcl.2010.09.058
  • Gajbhiye V, Jain NK. The treatment of glioblastoma xenografts by surfactant conjugated dendritic nanoconjugates. Biomaterials. 2011;32:6213–6225.10.1016/j.biomaterials.2011.04.057
  • Patel SK, Gajbhiye V, Jain NK. Synthesis, characterization and brain targeting potential of paclitaxel loaded thiamine-PPI nanoconjugates. J. Drug Target. 2012;20:841–849.10.3109/1061186X.2012.719231
  • Somani S, Blatchford DR, Millington O, et al. Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. J. Controlled Release. 2014;188:78–86.10.1016/j.jconrel.2014.06.006
  • Al-Jamal KT, Al-Jamal WT, Akerman S, et al. Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth. Proc. Nat. Acad. Sci. 2010;107:3966–3971.10.1073/pnas.0908401107
  • Jain K, Jain NK. Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer. J. Nanosci. Nanotechnol. 2014;14:5075–5087.10.1166/jnn.2014.8677
  • Kaminskas LM, Kelly BD, McLeod VM, et al. Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker. J. Controlled Release. 2011;152:241–248.10.1016/j.jconrel.2011.02.005
  • Niidome T, Yamauchi H, Takahashi K, et al. Hydrophobic cavity formed by oligopeptide for doxorubicin delivery based on dendritic poly(L-lysine). J. Biomater. Sci. Polym. Ed. 2014;25:1362–1373.10.1080/09205063.2014.938979
  • Sgouras D, Duncan R. Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1? Use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity. J. Mater. Sci. Mater. Med. 1990;1:61–68.10.1007/BF00839070
  • Neerman MF, Chen H-T, Parrish AR, et al. Reduction of drug toxicity using dendrimers based on melamine. Mol. Pharm. 1:390–393.
  • Jevprasesphant R, Penny J, Jalal R, et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 2003;252:263–266.10.1016/S0378-5173(02)00623-3
  • Rupp R, Rosenthal SL, Stanberry LR. VivaGel (SPL7013 Gel): a candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int. J. Nanomed. 2007;2:561–566.
  • Tyssen D, Henderson SA, Johnson A, et al. Structure activity relationship of dendrimer microbicides with dual action antiviral activity. PLoS One. 2010;5:e12309.10.1371/journal.pone.0012309
  • DEP™ docetaxel. n.d. [cited 2015 Jun 6]. Available from: http://www.starpharma.com/drug_delivery/dep_docetaxel
  • Kesharwani P, Banerjee S, Gupta U, et al. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater. Today. 2015;18:565–572.10.1016/j.mattod.2015.06.003
  • Mansuri S, Kesharwani P, Tekade RK, et al. Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral delivery of albendazole. Eur. J. Pharm. Biopharm. 2015. doi:10.1016/j.ejpb.2015.10.015. [Epub ahead of print]
  • Cheng Y, Xu Z, Ma M, et al. Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci. 2008;97:123–143.10.1002/(ISSN)1520-6017
  • Jain S, Kesharwani P, Tekade RK, et al. One platform comparison of solubilization potential of dendrimer with some solubilizing agents. Drug Dev. Ind. Pharm. 2015;41:722–727.10.3109/03639045.2014.900077
  • Gothwal A, Kesharwani P1, Gupta U, et al. Dendrimers as an effective nanocarrier in cardiovascular disease. Curr. Pharm. Des. 2015;21:4519–4526.10.2174/1381612820666150827094341
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Delivery Rev. 2013;65:36–48.10.1016/j.addr.2012.09.037
  • de Visscher SAHJ, Kaščáková S, de Bruijn HS, et al. Fluorescence localization and kinetics of mTHPC and liposomal formulations of mTHPC in the window-chamber tumor model. Lasers Surg. Med. 2011;43:528–536.10.1002/lsm.v43.6
  • Huang S-L, McPherson DD, MacDonald RC. A method to co-encapsulate gas and drugs in liposomes for ultrasound-controlled drug delivery. Ultrasound Med. Biol. 2008;34:1272–1280.10.1016/j.ultrasmedbio.2008.01.005
  • Matteucci ML, Thrall DE. The role of liposomes in drug delivery and diagnostic imaging: a review. Vet. Radiol. Ultrasound. 2000;41:100–107.10.1111/vru.2000.41.issue-2
  • Jain A, Jain K, Kesharwani P, et al. Low density lipoproteins mediated nanoplatforms for cancer targeting. J. Nanopart. Res. 2013;15:1888. doi:10.1007/s11051-013-1888-7 10.1007/s11051-013-1888-7
  • Karchemski F, Zucker D, Barenholz Y, et al. Carbon nanotubes-liposomes conjugate as a platform for drug delivery into cells. J. Controlled Release. 2012;160:339–345.10.1016/j.jconrel.2011.12.037
  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, et al. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 2005;155:377–384.10.1016/j.toxlet.2004.11.004
  • Lam C-W, James JT, McCluskey R, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004;77:126–134.
  • Mishra V, Kesharwani P, JainNK. Functionalized polymeric nanoparticles for delivery of bioactives. Nanobiomedicine. 2014;91–123: Publ M/s Stud Press LLC, USA.
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006;307:93–102.10.1016/j.ijpharm.2005.10.010
  • Kesharwani P, Banerjee S, Padhye S, et al. Hyaluronic acid engineered nanomicelles loaded with 3,4-difluorobenzylidene curcumin for targeted killing of CD44+ stem-like pancreatic cancer cells. Biomacromolecules. 2015;16:3042–3053.10.1021/acs.biomac.5b00941
  • Amjad MW, Amin MCIM, Katas H, et al. In vivo antitumor activity of folate-conjugated cholic acid-polyethylenimine micelles for the codelivery of doxorubicin and siRNA to colorectal adenocarcinomas. Mol. Pharm. 2015;12:4247–4258.
  • Yamamoto T, Yokoyama M, Opanasopit P, et al. What are determining factors for stable drug incorporation into polymeric micelle carriers? Consideration on physical and chemical characters of the micelle inner core. J. Controlled Release. 2007;123:11–18.10.1016/j.jconrel.2007.07.008
  • Jain A, Garg NK, Jain A, et al. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev. Ind. Pharm. 2015:1–9. doi:10.3109/03639045.2015.1104343 [Epub ahead of print].
  • Jain A, Kesharwani P, Garg NK, et al. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf. B Biointerfaces. 2015;134:47–58.10.1016/j.colsurfb.2015.06.027
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm. 2000;50:161–177.10.1016/S0939-6411(00)00087-4
  • Denora N, Laquintana V, Lopalco A, et al. In vitro targeting and imaging the translocator protein TSPO 18-kDa through G(4)-PAMAM-FITC labeled dendrimer. J. Controlled Release. 2013;172:1111–1125.10.1016/j.jconrel.2013.09.024
  • Biswas S, Deshpande PP, Navarro G, et al. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials. 2013;34:1289–1301.10.1016/j.biomaterials.2012.10.024
  • Kaminskas LM, Kelly BD, McLeod VM, et al. Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-l-lysine dendrimers. Mol. Pharm. 6:1190–1204.
  • Kaneshiro TL, Lu Z-R. Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials. 2009;30:5660–5666.10.1016/j.biomaterials.2009.06.026
  • Kuang Y, An S, Guo Y, et al. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int. J. Pharm. 2013;454:11–20.10.1016/j.ijpharm.2013.07.019
  • Wu G, Yang W, Barth RF, et al. Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin. Cancer Res. 2007;13:1260–1268.10.1158/1078-0432.CCR-06-2399
  • Huang S, Li J, Han L, et al. Dual targeting effect of Angiopep-2-modified. DNA-loaded nanoparticles for glioma. Biomaterials. 2011;32:6832–6838.
  • Choi JS, Nam K, Park J-Y, et al. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. J. Controlled Release. 2004;99:445–456.10.1016/j.jconrel.2004.07.027
  • Kim J-B, Choi JS, Nam K, et al. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J. Controlled Release. 2006;114:110–117.10.1016/j.jconrel.2006.05.011
  • Peng C, Zheng L, Chen Q, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33:1107–1119.10.1016/j.biomaterials.2011.10.052
  • Han L, Li J, Huang S, et al. Peptide-conjugated polyamidoamine dendrimer as a nanoscale tumor-targeted T1 magnetic resonance imaging contrast agent. Biomaterials. 2011;32:2989–2998.10.1016/j.biomaterials.2011.01.005
  • Koppu S, Oh YJ, Edrada-Ebel R, et al. Tumor regression after systemic administration of a novel tumor-targeted gene delivery system carrying a therapeutic plasmid DNA. J. Controlled Release. 2010;143:215–221.10.1016/j.jconrel.2009.11.015
  • Aldawsari H, Edrada-Ebel R, Blatchford DR, et al. Enhanced gene expression in tumors after intravenous administration of arginine-, lysine- and leucine-bearing polypropylenimine polyplex. Biomaterials. 2011;32:5889–5899.10.1016/j.biomaterials.2011.04.079
  • Shah V, Taratula O, Garbuzenko OB, et al. Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug. Clin. Cancer Res. 2013;19:6193–6204.10.1158/1078-0432.CCR-13-1536
  • Liu S, Guo Y, Huang R, et al. Gene and doxorubicin co-delivery system for targeting therapy of glioma. Biomaterials. 2012;33:4907–4916.10.1016/j.biomaterials.2012.03.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.