245
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo

, , , , , & show all
Pages 1170-1186 | Received 02 Feb 2016, Accepted 26 Apr 2016, Published online: 12 May 2016

References

  • Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin. Orthop. Relat. Res. 2000;371:10–27.10.1097/00003086-200002000-00003
  • Gentleman E, Polak JM. Historic and current strategies in bone tissue engineering: do we have a hope in Hench? J. Mater. Sci. Mater. Med. 2006;17:1029–1035.10.1007/s10856-006-0440-z
  • Samartzis D, Shen FH, Goldberg EJ, et al. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine. 2005;30:1756–1761.10.1097/01.brs.0000172148.86756.ce
  • Heinemann S, Gelinsky M, Worch H, et al. Resorbable bone substitution materials: an overview of commercially available materials and new approaches in the field of composites. Der Orthopäde. 2011;40:761–773.10.1007/s00132-011-1748-z
  • Bohner M. Resorbable biomaterials as bone graft substitutes. Mater. Today. 2010;13:24–30.10.1016/S1369-7021(10)70014-6
  • Dorozhkin SV. Calcium orthophosphates. J. Mater. Sci. 2007;42:1061–1095.10.1007/s10853-006-1467-8
  • LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res. 2002;72:81–98.10.1097/00003086-200202000-00009
  • Lukina YS, Sventskaya NV. Biocomposite material based on dicalcium phosphate dehydrate. Glass Ceram. 2011;67:354–357.10.1007/s10717-011-9297-9
  • Prasad BE, Kamath PV. Electrodeposition of dicalcium phosphate dihydrate coatings on stainless steel substrates. Bull. Mater. Sci. 2013;36:475–481.
  • Zhao Z, Quan Z, Jiang D, et al. In vitro and in vivo biological characterizations of a new poly (amino acids)/calcium sulfate composite material for bone regeneration. J. Mater. Sci. 2013;48:2022–2029.10.1007/s10853-012-6971-4
  • Coraça-Huber DC, Wurm A, Fille M, et al. Antibiotic-loaded calcium carbonate/calcium sulfate granules as co-adjuvant for bone grafting. J. Mater. Sci. Mater. Med. 2015;26:19–28.
  • Thomas MV, Puleo DA. Calcium sulfate: properties and clinical applications. J. Biomed. Mater. Res. Appl. Biomater. 2009;88:597–610.10.1002/jbm.b.v88b:2
  • Rauschmann MA, Wichelhaus TA, Stirnal V, et al. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials. 2005;26:2677–2684.10.1016/j.biomaterials.2004.06.045
  • Oh SA, Lee GS, Park JH, et al. Osteoclastic cell behaviors affected by the α-tricalcium phosphate based bone cements. J. Mater. Sci. Mater. Med. 2010;21:3019–3027.10.1007/s10856-010-4152-z
  • Suzuki O, Nakamura M, Miyasaka Y, et al. Bone formation on synthetic precursors of hydroxyapatite. Tohoku J. Exp. Med. 1991;164:37–50.10.1620/tjem.164.37
  • Hu G, Xiao L, Fu H, et al. Degradable and bioactive scaffold of calcium phosphate and calcium sulphate from self-setting cement for bone regeneration. J. Porous Mater. 2010;17:605–613.10.1007/s10934-009-9330-3
  • Ma PX. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 2008;60:184–198.10.1016/j.addr.2007.08.041
  • Neumann M, Epple M. Composites of calcium phosphate and polymers as bone substitution materials. Eur. J. Trauma. 2006;32:125–131.10.1007/s00068-006-6044-y
  • Zhang Y, Shan W, Wei J, et al. Bioactivity and cytocompatibility of dicalcium phosphate/poly (amino acid) biocomposite with degradability. Appl. Surf. Sci. 2012;258:2632–2638.10.1016/j.apsusc.2011.10.109
  • Li H, Yan Y, Wei J, et al. Bone substitute biomedical material of multi-(amino acid) copolymer: in vitro degradation and biocompatibility. J. Mater. Sci. 2011;22:2555–2563.
  • Yang SR, Kim SB, Joe CO, et al. Intracellular delivery enhancement of poly (amino acid) drug carriers by oligoarginine conjugation. J. Biomed. Mater. Res A. 2008;86:137–148.10.1002/(ISSN)1552-4965
  • Chiu HC, Kopecková P, Deshmane SS, et al. Lysosomal degradability of poly (α-amino acids). J. Biomed. Mater. Res. 1997;34:381–392.10.1002/(ISSN)1097-4636
  • Gala-García A, Carneiro MB, Silva GA, et al. In vitro and in vivo evaluation of the biocompatibility of a calcium phosphate/poly (lactic-co-glycolic acid) composite. J. Mater. Sci. Mater. Med. 2012;23:1785–1796.
  • Byun IS, Sarkar SK, Anirban Jyoti M, et al. Initial biocompatibility and enhanced osteoblast response of Si doping in a porous BCP bone graft substitute. J. Mater. Sci. Mater. Med. 2012;21:1937–1947.
  • Alcaide M, Serrano MC, Pagani R, et al. Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials. 2009;30:45–51.10.1016/j.biomaterials.2008.09.012
  • Alcaide M, Serrano MC, Pagani R, et al. L929 fibroblast and Saos-2 osteoblast response to hydroxyapatite-beta TCP/agarose biomaterial. J. Biomed. Mater. Res A. 2009;89A:539–549.10.1002/jbm.a.v89a:2
  • Cicuéndez M, Izquierdo-Barba I, Portolés MT, et al. Biocompatibility and levofloxacin delivery of mesoporous materials. Eur. J. Pharm. Biopharm. 2013;84:115–124.10.1016/j.ejpb.2012.11.029
  • Tettamanti G, Grimaldi A, Rinaldi L, et al. The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biol. Cell. 2004;96:443–455.10.1016/j.biolcel.2004.04.008
  • Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–681.10.1016/S0142-9612(99)00242-2
  • Chou SY, Cheng CM, LeDuc PR. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells. Biomaterials. 2009;30:3136–3142.10.1016/j.biomaterials.2009.02.037
  • Wu C, Ramaswmy Y, Zhu Y, et al. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(DL-lac-tide-co-glycolide) films. Biomaterials. 2009;30:2199–2208.10.1016/j.biomaterials.2009.01.029
  • Dulgar-Tulloch AJ, Bizios R, Siegel RW. Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. J. Biomed. Mater. Res A. 2009;90:586–594.10.1002/jbm.a.v90a:2
  • Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology. Mol. Cell. Endocrinol. 2004;228:79–102.10.1016/j.mce.2003.06.002
  • Lao LH, Wang YJ, Zhu Y, et al. Poly (lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J. Mater. Sci. Mater. Med. 2010;22:4374–4378.
  • Hu G, Xiao L, Fu H, et al. Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. J. Mater. Sci. Mater. Med. 2010;21:627–634.
  • Schultheiss J, Seebach C, Henrich D, et al. Mesenchymal stem cell (MSC) and endothelial progenitor cell (EPC) growth and adhesion in six different bone graft substitutes. Eur. J. Trauma Emerg. Surg. 2011;37:635–644.10.1007/s00068-011-0119-0
  • Schneider G, Blechschmidt K, Linde D, et al. Bone regeneration with glass ceramic implants and calcium phosphate cements in a rabbit cranial defect model. J. Mater. Sci. Mater. Med. 2010;21:2853–2859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.