274
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Magnetic targeted drug delivery carriers encapsulated with pH-sensitive polymer: synthesis, characterization and in vitro doxorubicin release studies

, , , &
Pages 1303-1316 | Received 23 Mar 2016, Accepted 17 May 2016, Published online: 22 Jun 2016

References

  • López T, Ortiz-Islas E, Guevara P, et al. Release of copper complexes from a nanostructured sol-gel titania for cancer treatment. J. Mater. Sci. 2015;50:2410–2421.10.1007/s10853-014-8796-9
  • Nie S, Xing Y, Kim GJ, et al. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007;9:257–288.10.1146/annurev.bioeng.9.060906.152025
  • Sahu S, Dutta RK. Novel hybrid nanostructured materials of magnetite nanoparticles and pectin. J. Magn. Magn. Mater. 2011;323:980–987.10.1016/j.jmmm.2010.11.085
  • Xu C, Sun S. Monodisperse magnetic nanoparticles for biomedical applications. Polym. Int. 2007;56:821–826.10.1002/(ISSN)1097-0126
  • Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discovery Today. 2012;17:928–934.10.1016/j.drudis.2012.03.010
  • Ahmed N, Michelin-Jamois M, Fessi H, et al. Modified double emulsion process as a new route to prepare submicron biodegradable magnetic/polycaprolactone particles for in vivo theranostics. Soft Matter. 2012;8:2554–2564.10.1039/c2sm06872a
  • Sun HW, Zhang LY, Zhu XJ, et al. Magnetic poly(pegma–maa) nanoparticles: photochemical preparation and potential application in drug delivery. J. Biomater. Sci. Polym. Ed. 2009;20:1675–1686.10.1163/156856208X386264
  • Dorniani D, Kura AU, Hussein M, et al. Controlled-release formulation of perindopril erbumine loaded PEG-coated magnetite nanoparticles for biomedical applications. J. Mater. Sci. 2014;49:8487–8497.10.1007/s10853-014-8559-7
  • Ferguson RM, Minard KR, Krishnan KM. Optimization of nanoparticle core size for magnetic particle imaging. J. Magn. Magn. Mater. 2009;321:1548–1551.10.1016/j.jmmm.2009.02.083
  • Ahmed N, Jaafar-Maalej C, Eissa MM, et al. New oil-in-water magnetic emulsion as contrast agent for in vivo magnetic resonance imaging (MRI). J. Biomed. Nanotechnol. 2013;9:1579–1585.10.1166/jbn.2013.1644
  • Sun C, Du K, Fang C, et al. PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano. 2010;4:2402–2410.10.1021/nn100190v
  • Bae Y, Nishiyama N, Fukushima S, et al. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem. 2005;16:122–130.10.1021/bc0498166
  • Kim GC, Li YY, Chu YF, et al. A nanosized, thermo-sensitive drug carrier: self-assembled Fe3O4-OA-g-P(OA-co-NIPAAm) magnetomicelles. J. Biomater. Sci. Polym. Ed. 2008;19:1249–1259.10.1163/156856208785540109
  • Zhou J, Fa H, Yin W, et al. Synthesis of superparamagnetic iron oxide nanoparticles coated with a DDNP-carboxyl derivative for in vitro magnetic resonance imaging of Alzheimer’s disease. Mater. Sci. Eng. C. 2014;37:348–355.10.1016/j.msec.2014.01.005
  • Yang JH, Zou P, Yang LL, et al. A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 2014;303:425–432.10.1016/j.apsusc.2014.03.018
  • Lu B, Zhu Y, Zhao X, et al. Sodium polyacrylate modified Fe3O4 magnetic microspheres formed by self-assembly of nanocrystals and their applications. Mater. Res. Bull. 2013;48:895–900.10.1016/j.materresbull.2012.11.078
  • Ding XW, Liu Y, Li JH, et al. Hydrazone-bearing PMMA-functionalized magnetic nanocubes as pH-responsive drug carriers for remotely targeted cancer therapy in vitro and in vivo. ACS Appl. Mater. Interfaces. 2014;6:7395–7407.10.1021/am500818m
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.10.1016/j.biomaterials.2004.10.012
  • Zhao H, Li Z, Yang B, et al. Synthesis of dual-functional targeting probes for cancer theranostics based on iron oxide nanoparticles coated by centipede-like polymer connected with pH-responsive anticancer drug. J. Biomater. Sci. Polym. Ed. 2015;26:1178–1189.10.1080/09205063.2015.1080900
  • Escudero A, Calvo ME, Rivera-Fernández S, et al. Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid). Langmuir. 2013;29:1985–1994.10.1021/la304534f
  • Moscoso-Londoño O, Gonzalez JS, Muraca D, et al. Structural and magnetic behavior of ferrogels obtained by freezing thawing of polyvinylalcool/poly(acrylic acid) (PAA)-coated iron oxide nanoparticles. Eur. Polym. J. 2013;49:279–289.10.1016/j.eurpolymj.2012.11.007
  • Hajdú A, Szekeres M, Tóth IY, et al. Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media. Colloids Surf. B. 2012;94:242–249.10.1016/j.colsurfb.2012.01.042
  • Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996;56:1194–1198.
  • Tian Z, Zhang AY, Ye L, et al. Preparation and evaluation of a linoleic-acid-modified amphiphilic polypeptide copolymer as a carrier for controlled drug release. Biomed. Mater. 2008;3:4855–4863.
  • Wu J, Wang Y, Jiang W, et al. Synthesis and characterization of recyclable clusters of magnetic nanoparticles as doxorubicin carriers for cancer therapy. Appl. Surf. Sci. 2014;321:43–49.
  • Guo SJ, Li D, Zhang LX, et al. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials. 2009;30:1881–1889.10.1016/j.biomaterials.2008.12.042
  • Petcharoen K, Sirivat A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B. 2012;177:421–427.10.1016/j.mseb.2012.01.003
  • Sun S, Zeng H, Robinson DB, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004;126:273–279.10.1021/ja0380852
  • Gaihre B, Khil M, Lee D, et al. Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int. J. Pharm. 2009;365:180–189.10.1016/j.ijpharm.2008.08.020
  • Kievit FM, Wang FY, Fang C, et al. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Controlled Release. 2011;152:76–83.10.1016/j.jconrel.2011.01.024
  • Fan T, Li M, Wu X, et al. Preparation of thermoresponsive and pH-sensitivity polymer magnetic hydrogel nanospheres as anticancer drug carriers. Colloids Surf. B. 2011;88:593–600.10.1016/j.colsurfb.2011.07.048
  • Varshosaz J, Sadeghi-aliabadi H, Ghasemi S, et al. Use of magnetic folate-dextran-retinoic acid micelles for dual targeting of doxorubicin in breast cancer. Biomed. Res. Int. 2013;1:680712.
  • Yoo HS, Park TG. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J. Controlled Release. 2004;100:247–256.10.1016/j.jconrel.2004.08.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.