277
Views
10
CrossRef citations to date
0
Altmetric
Articles

Hierarchical polymer coating for optimizing the antifouling and bactericidal efficacies

, , , , , , , & show all
Pages 1397-1412 | Received 03 May 2016, Accepted 25 Jun 2016, Published online: 18 Jul 2016

References

  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–1322.10.1126/science.284.5418.1318
  • Campoccia D, Montanaro L, Arciola CR. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials. 2013;34:8018–8029.10.1016/j.biomaterials.2013.07.048
  • Sangsuwan A, Kawasaki H, Iwasaki Y. Thiolated-2-methacryloyloxyethyl phosphorylcholine protected silver nanoparticles as novel photo-induced cell-killing agents. Colloids Surf. B. 2016;140:128–134.10.1016/j.colsurfb.2015.12.037
  • Nejadnik MR, van der Mei HC, Norde W, et al. Bacterial adhesion and growth on a polymer brush-coating. Biomaterials. 2008;29:4117–4121.10.1016/j.biomaterials.2008.07.014
  • Li M, Neoh K-G, Kang E-T, et al. Surface modification of silicone with covalently immobilized and crosslinked agarose for potential application in the inhibition of infection and omental wrapping. Adv. Funct. Mater. 2014;24:1631–1643.10.1002/adfm.v24.11
  • Bai L, Tan L, Chen L, et al. Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization. J. Mater. Chem. B. 2014;2:7785–7794.10.1039/C4TB01383B
  • Kenawy el-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8:1359–1384.10.1021/bm061150q
  • Murata H, Koepsel RR, Matyjaszewski K, et al. Permanent, non-leaching antibacterial surfaces – 2: how high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28:4870–4879.10.1016/j.biomaterials.2007.06.012
  • Kangwansupamonkon W, Tiewtrakoonwat W, Supaphol P, et al. Surface modification of electrospun chitosan nanofibrous mats for antibacterial activity. J. Appl. Polym. Sci. 2014;131:40981.
  • Boonkaew B, Suwanpreuksa P, Cuttle L, et al. Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J. Appl. Polym. Sci. 2014;131:40215.
  • Khampieng T, Brikshavana P, Supaphol P. Silver nanoparticle-embedded poly(vinyl pyrrolidone) hydrogel dressing: gamma-ray synthesis and biological evaluation. J. Biomater. Sci., Polym. Ed. 2014;25:826–842.10.1080/09205063.2014.910154
  • Cao X, Tang M, Liu F, et al. Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloids Surf. B. 2010;81:555–562.10.1016/j.colsurfb.2010.07.057
  • Xia Y, Cheng C, Wang R, et al. Ag-nanogel blended polymeric membranes with antifouling, hemocompatible and bactericidal capabilities. J. Mater. Chem. B. 2015;3:9295–9304.10.1039/C5TB01523E
  • Ghimire N, Luo J, Tang RG, et al. Novel anti-infective activities of chitosan immobilized titanium surface with enhanced osteogenic properties. Colloids Surf. B. 2014;122:126–133.10.1016/j.colsurfb.2014.06.060
  • Luo J, Porteous N, Lin JJ, et al. Acyclic N-halamine-immobilized polyurethane: preparation and antimicrobial and biofilm-controlling functions. J. Bioact. Compat. Pol. 2015;30:157–166.10.1177/0883911515569007
  • Khampieng T, Wnek GE, Supaphol P. Electrospun DOXY-h loaded-poly(acrylic acid) nanofiber mats: in vitro drug release and antibacterial properties investigation. J. Biomater. Sci., Polym. Ed. 2014;25:1292–1305.10.1080/09205063.2014.929431
  • Liu SQ, Yang C, Huang Y, et al. Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition. Adv. Mater. 2012;24:6484–6489.10.1002/adma.v24.48
  • Cheng G, Xue H, Zhang Z, et al. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew. Chem. Int. Ed. 2008;47:8831–8834.10.1002/anie.v47:46
  • Ding X, Yang C, Lim TP, et al. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials. 2012;33:6593–6603.10.1016/j.biomaterials.2012.06.001
  • Mi L, Jiang S. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew. Chem. Int. Ed. 2014;53:1746–1754.10.1002/anie.201304060
  • Ye G, Lee J, Perreault F, et al. Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated ‘defending’ and ‘attacking’ strategies against biofouling. ACS Appl. Mater. Interfaces. 2015;7:23069–23079.10.1021/acsami.5b06647
  • Cheng C, He A, Nie C, et al. One-pot cross-linked copolymerization for the construction of robust antifouling and antibacterial composite membranes. J. Mater. Chem. B. 2015;3:4170–4180.10.1039/C5TB00136F
  • Yang C, Ding X, Ono RJ, et al. Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating. Adv. Mater. 2014;26:7346–7351.10.1002/adma.v26.43
  • Wach JY, Bonazzi S, Gademann K. Antimicrobial surfaces through natural product hybrids. Angew. Chem. Int. Ed. 2008;47:7123–7126.10.1002/anie.v47:37
  • Yu Q, Cho J, Shivapooja P, et al. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl. Mater. Interfaces. 2013;5:9295–9304.10.1021/am4022279
  • Yu Q, Wu Z, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015;16:1–13.10.1016/j.actbio.2015.01.018
  • Yu Q, Ista LK, López GP. Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties. Nanoscale. 2014;6:4750–4757.10.1039/c3nr06497b
  • Muszanska AK, Rochford ET, Gruszka A, et al. Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules. 2014;15:2019–2026.10.1021/bm500168s
  • Xin Z, Du S, Zhao C, et al. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components. Appl. Surf. Sci. 2016;365:99–107.10.1016/j.apsusc.2015.12.217
  • Huang CJ, Brault ND, Li Y, et al. Controlled hierarchical architecture in surface-initiated zwitterionic polymer brushes with structurally regulated functionalities. Adv. Mater. 2012;24:1834–1837.10.1002/adma.v24.14
  • Huang CJ, Li Y, Jiang S. Zwitterionic polymer-based platform with two-layer architecture for ultra low fouling and high protein loading. Anal. Chem. 2012;84:3440–3445.10.1021/ac3003769
  • Yamamoto S, Ejaz M, Tsujii Y, et al. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density. Macromolecules. 2000;33:5608–5612.10.1021/ma991988o
  • Ma J, Luan S, Song L, et al. Fabricating a cycloolefin polymer immunoassay platform with a dual-function polymer brush via a surface-initiated photoiniferter-mediated polymerization strategy. ACS Appl. Mater. Interfaces. 2014;6:1971–1978.10.1021/am405017h
  • Kawasaki Y, Iwasaki Y. Surface modification of poly(ether ether ketone) with methacryloyl-functionalized phospholipid polymers via self-initiation graft polymerization. J. Biomater. Sci., Polym. Ed. 2014;25:895–906.10.1080/09205063.2014.911570
  • Sun C, Ji H, Qin H, et al. A facile approach toward multifunctional polyethersulfone membranes via in situ cross-linked copolymerization. J. Biomater. Sci., Polym. Ed. 2015;26:1013–1034.10.1080/09205063.2015.1071929
  • Krause JE, Brault ND, Li Y, et al. Photoiniferter-mediated polymerization of zwitterionic carboxybetaine monomers for low-fouling and functionalizable surface coatings. Macromolecules. 2011;44:9213–9220.10.1021/ma202007h
  • Barbey R, Lavanant L, Paripovic D, et al. Polymer nrushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem. Rev. 2009;109:5437–5527.10.1021/cr900045a
  • Bai P, Cao X, Zhang Y, et al. Modification of a polyethersulfone matrix by grafting functional groups and the research of biomedical performance. J. Biomater. Sci., Polym. Ed. 2010;21:1559–1572.10.1163/092050609X12519805626158
  • Xia Y, Cheng C, Wang R, et al. Surface-engineered nanogel assemblies with integrated blood compatibility, cell proliferation and antibacterial property: towards multifunctional biomedical membranes. Polym. Chem. 2014;5:5906–5919.10.1039/C4PY00870G
  • Shao Q, Jiang S. Molecular understanding and design of zwitterionic materials. Adv. Mater. 2015;27:15–26.10.1002/adma.v27.1
  • Chen L, Tan L, Liu S, et al. Surface modification by grafting of poly(SBMA-co-AEMA)-g-PDA coating and its application in CE. J. Biomater. Sci., Polym. Ed. 2014;25:766–785.10.1080/09205063.2014.905030
  • Yan S, Luan S, Shi H, et al. Hierarchical polymer brushes with dominant antibacterial mechanisms switching from bactericidal to bacteria repellent. Biomacromolecules. 2016;17:1696–1704. doi:10.1021/acs.biomac.6b00115.
  • Jiang H, Wang XB, Li CY, et al. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Langmuir. 2011;27:11575–11581.10.1021/la202101q
  • Cao F, Tan L, Xiang L, et al. Application of the copolymers containing sulfobetaine methacrylate in protein separation by capillary electrophoresis. J. Biomater. Sci., Polym. Ed. 2013;24:2058–2070.10.1080/09205063.2013.823072
  • Zheng X, Zhang C, Bai L, et al. Antifouling property of monothiol-terminated bottle-brush poly(methylacrylic acid)-graft-poly(2methyl-2-oxazoline) copolymer on gold surfaces. J. Mater. Chem. B. 2015;3:1921–1930.10.1039/C4TB01766H
  • Zhang C, Liu S, Tan L, et al. Star-shaped poly(2-methyl-2-oxazoline)-based films: rapid preparation and effects of polymer architecture on antifouling properties. J. Mater. Chem. B. 2015;3:5615–5628.10.1039/C5TB00732A
  • Chen L, Liu G, Liu S, et al. Preparation and characterization of brush-like PEGMA-graft-PDA coating and its application for protein separation by CE. J. Biomater. Sci., Polym. Ed. 2014;25:1306–1327.10.1080/09205063.2014.932267
  • Iwasaki Y, Shibata N, Ninomiya M, et al. Importance of a biofouling-resistant phospholipid polymer to create a heparinized blood-compatible surface. J. Biomater. Sci., Polym. Ed. 2002;13:323–335.10.1163/156856202320176556
  • Liu Y, Inoue Y, Sakata S, et al. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. J. Biomater. Sci., Polym. Ed. 2014;25:474–486.10.1080/09205063.2013.873282
  • Tuson HH, Weibel DB. Bacteria–surface interactions. Soft Matter. 2013;9:4368–4380.10.1039/c3sm27705d
  • Hasan J, Crawford RJ, Ivanova EP. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 2013;31:295–304.10.1016/j.tibtech.2013.01.017
  • Kugler R, Bouloussa O, Rondelez F. Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology. 2005;151(Pt5):1341–1348.10.1099/mic.0.27526-0
  • Asri LATW, Crismaru M, Roest S, et al. A shape-adaptive, antibacterial-coating of immobilized quaternary-ammonium compounds tethered on hyperbranched polyurea and its mechanism of action. Adv. Funct. Mater. 2014;24:346–355.10.1002/adfm.v24.3
  • Tejero R, López D, López-Fabal F, et al. High efficiency antimicrobial thiazolium and triazolium side-chain polymethacrylates obtained by controlled alkylation of the corresponding azole derivatives. Biomacromolecules. 2015;16:1844–1854.10.1021/acs.biomac.5b00427

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.