259
Views
8
CrossRef citations to date
0
Altmetric
Articles

Modification and cytocompatibility of biocomposited porous PLLA/HA-microspheres scaffolds

, , &
Pages 1462-1475 | Received 16 May 2016, Accepted 06 Jul 2016, Published online: 22 Jul 2016

References

  • Qi H, Ye Z, Ren H, et al. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci. 2016;148:139–144.10.1016/j.lfs.2016.02.040
  • Nishida Y, Domura R, Sakai R, et al. Fabrication of PLLA/HA composite scaffolds modified by DNA. Polymer. 2015;56:73–81.10.1016/j.polymer.2014.09.063
  • He C, Xiao G, Jin X, et al. Electrodeposition on nanofibrous polymer scaffolds: rapid mineralization, tunable calcium phosphate composition and topography. Adv. Funct. Mater. 2010;20:3568–3576.10.1002/adfm.v20:20
  • Santoro M, Shah SR, Walker JL, et al. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 2016. doi:10.1016/j.addr.2016.04.019.
  • Lasprilla AJ, Martinez GA, Lunelli BH, et al. Poly-lactic acid synthesis for application in biomedical devices – a review. Biotechnol. Adv. 2012;30:321–328.10.1016/j.biotechadv.2011.06.019
  • He X, Lu H, Kawazoe N, et al. A novel cylinder-type poly(L-lactic acid)–collagen hybrid sponge for cartilage tissue engineering. Tissue Eng. Part C. 2010;16:329–338.
  • Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–4757.10.1016/j.biomaterials.2003.12.005
  • Sharma S, Verma A, Teja BV, et al. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: trends and transitions. Colloids Surf. B Biointerfaces. 2015;133:120–139.10.1016/j.colsurfb.2015.05.014
  • Liao C, Xie Y, Zhou J. Computer simulations of fibronectin adsorption on hydroxyapatite surfaces. RSC Adv. 2014;4:15759–15769.10.1039/c3ra47381c
  • Chen S, He Z, Xu G, et al. Fabrication and characterization of modified nanofibrous poly(L-lactic acid) scaffolds by thermally induced phase separation technique and aminolysis for promoting cyctocompatibility. J. Biomater. Sci. Polym. Ed. 2016;27:1058–1068.
  • He K, Xiao GY, Xu WH, et al. Ultrasonic enhancing amorphization during synthesis of calcium phosphate. Ultrason. Sonochem. 2014;21:499–504.10.1016/j.ultsonch.2013.08.011
  • Dorozhkin SV. Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2015;55:272–326.
  • Xiao GY, Lu YP, Xu WH, et al. Microstructure and cytocompatibility of plasma sprayed gradient hydroxyapatite coatings. Surf. Eng. 2015;31:860–866.10.1179/1743294414Y.0000000426
  • Wu XH, Wu ZY, Su JC, et al. Nano-hydroxyapatite promotes self-assembly of honeycomb pores in poly(L-lactide) films through breath-figure method and MC3T3-E1 cell functions. RSC Adv. 2015;5:6607–6616.10.1039/C4RA13843K
  • Raghavendran HRB, Mohan S, Genasan K, et al. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation. Colloids Surf. B Biointerfaces. 2016;139:68–78.10.1016/j.colsurfb.2015.11.053
  • Xie L, Yu H, Yang W, et al. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. J. Biomater. Sci. Polym. Ed. 2016;27:505–528.10.1080/09205063.2016.1140613
  • Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362–3378.10.1016/j.actbio.2010.02.017
  • Dorozhkin SV. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010;6:4457–4475.10.1016/j.actbio.2010.06.031
  • Fu H, Rahaman MN, Day DE, et al. Hollow hydroxyapatite microspheres as a device for controlled delivery of proteins. J. Mater. Sci. Mater. Med. 2011;22:579–591.10.1007/s10856-011-4250-6
  • Qi C, Zhu Y-J, Lu B-Q, et al. Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption. J. Mater. Chem. 2012;22:22642–22650.10.1039/c2jm35280j
  • Xiao G-y, LÜ Y-p, Zhu R-f, et al. Fabrication of hydroxyapatite microspheres with poor crystallinity using a novel flame-drying method. Trans. Nonferr. Metal. Soc. 2012;22, Supplement 1:s169–s174.
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915.10.1016/j.biomaterials.2006.01.017
  • Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 2009;30:4094–4103.10.1016/j.biomaterials.2009.04.024
  • Rodenas-Rochina J, Vidaurre A, Castilla Cortázar I, et al. Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polym. Degrad. Stab. 2015;119:121–131.10.1016/j.polymdegradstab.2015.04.015
  • Baldino L, Naddeo F, Cardea S, et al. FEM modeling of the reinforcement mechanism of Hydroxyapatite in PLLA scaffolds produced by supercritical drying, for Tissue Engineering applications. J. Mech. Behav. Biomed. Mater. 2015;51:225–236.10.1016/j.jmbbm.2015.07.021
  • Sadat-Shojai M, Khorasani M-T, Jamshidi A. A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem. Eng. J. 2016;289:38–47.10.1016/j.cej.2015.12.079
  • Nga NK, Hoai TT, Viet PH. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering. Colloids Surf. B Biointerfaces. 2015;128:506–514.10.1016/j.colsurfb.2015.03.001
  • Ma PX. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 2008;60:184–198.10.1016/j.addr.2007.08.041
  • Hollister SJ. Porous scaffold design for tissue engineering. Nat. Mater. 2005;4:518–524.10.1038/nmat1421
  • Tu C, Cai Q, Yang J, et al. The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solid–liquid phase separation. Polym. Adv. Technol. 2003;14:565–573.10.1002/(ISSN)1099-1581
  • Hua FJ, Kim GE, Lee JD, et al. Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA–dioxane–water system. J. Biomed. Mater. Res. 2002;63:161–167.10.1002/(ISSN)1097-4636
  • Hu Y, Ma S, Yang Z, et al. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Colloids Surf. B Biointerfaces. 2016;140:382–391.10.1016/j.colsurfb.2016.01.005
  • Kothapalli CR, Shaw MT, Wei M. Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties. Acta Biomater. 2005;1:653–662.10.1016/j.actbio.2005.06.005
  • Taboas JM, Maddox RD, Krebsbach PH, et al. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24:181–194.10.1016/S0142-9612(02)00276-4
  • Mathieu LM, Mueller TL, Bourban PE, et al. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:905–916.10.1016/j.biomaterials.2005.07.015
  • Yang F, Qu X, Cui W, et al. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials. 2006;27:4923–4933.10.1016/j.biomaterials.2006.05.028
  • Peng F, Yu X, Wei M. In vitro cell performance on hydroxyapatite particles/poly(L-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomater. 2011;7:2585–2592.10.1016/j.actbio.2011.02.021
  • Xiao GY, Lu YP, Zhu RF, et al. Effect of heat treatment on performance of hydroxyapatite coatings immersed in simulated body fluid. Surf. Eng. 2009;25:136–140.10.1179/026708408X375316
  • Zheng Y, Xiong C, Zhang S, et al. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique. Mater. Sci. Eng., C. 2015;55:512–523.10.1016/j.msec.2015.05.070
  • Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–2175.10.1016/S0142-9612(03)00044-9
  • Zhang R, Ma PX. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Res. 1999;45:285–293.10.1002/(ISSN)1097-4636
  • Liu X, Smith LA, Hu J, et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials. 2009;30:2252–2258.10.1016/j.biomaterials.2008.12.068
  • Sun H, Ai M, Zhu S, et al. Polylactide-hydroxyapatite nanocomposites with highly improved interfacial adhesion via mussel-inspired polydopamine surface modification. RSC Adv. 2015;5:95631–95642.10.1039/C5RA21010K
  • Hu Y, Zou S, Chen W, et al. Mineralization and drug release of hydroxyapatite/poly(l-lactic acid) nanocomposite scaffolds prepared by Pickering emulsion templating. Colloids Surf. B Biointerfaces. 2014;122:559–565.10.1016/j.colsurfb.2014.07.032
  • Xiao W, Sonny Bal B, Rahaman MN. Preparation of resorbable carbonate-substituted hollow hydroxyapatite microspheres and their evaluation in osseous defects in vivo. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;60:324–332.
  • Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8:1401–1421.10.1016/j.actbio.2011.11.017
  • Huang B, Yuan Y, Ding S, et al. Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2. Acta Biomater. 2015;27:275–285.10.1016/j.actbio.2015.09.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.