351
Views
12
CrossRef citations to date
0
Altmetric
Articles

Poly(γ-glutamic acid) modulates the properties of poly(ethylene glycol) hydrogel for biomedical applications

, , , , , , , , & show all
Pages 1775-1787 | Received 11 May 2016, Accepted 01 Sep 2016, Published online: 02 Oct 2016

References

  • Chang KY, Cheng LW, Ho GH, et al. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomater. 2009;5:1937–1947.
  • Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem. Rev. 2001;101:1869–1880.10.1021/cr000108x
  • Zhang KX, Zhang Y, Yan SF, et al. Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. Acta Biomater. 2013;9:7276–7288.10.1016/j.actbio.2013.03.025
  • Baker MI, Walsh SP, Schwartz Z, et al. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. B. 2012;100:1451–1457.
  • Trappmann B, Gautrot JE, Connelly JT, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 2012;11:642–649.10.1038/nmat3339
  • Wang DA, Varghese S, Sharma B, et al. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat. Mater. 2007;6:385–392.10.1038/nmat1890
  • Zeng L, Chen XF, Zhang Q, et al. Redifferentiation of dedifferentiated chondrocytes in a novel three-dimensional microcavitary hydrogel. J. Biomed. Mater. Res. A. 2015;103:1693–1702.10.1002/jbm.a.v103.5
  • Suh JKF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–2598.
  • Zhu JM. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31:4639–4656.10.1016/j.biomaterials.2010.02.044
  • Peppas NA, Keys KB, Torres-Lugo M, et al. Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Controlled Release. 1999;62:81–87.10.1016/S0168-3659(99)00027-9
  • Yang F, Wang J, Hou J, et al. Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials. 2013;34:1514–1528.10.1016/j.biomaterials.2012.10.058
  • Shin H, Jo S, Mikos AG. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethylene glycol) spacer. J. Biomed. Mater. Res.. 2002;61:169–179.10.1002/(ISSN)1097-4636
  • Calvert P. Hydrogels for Soft Machines. Adv. Mater. 2009;21:743–756.10.1002/adma.v21:7
  • Akdemir ZS, Akçakaya H, Kahraman MV, et al. Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth. Macromol. Biosci. 2008;8:852–862.10.1002/mabi.v8:9
  • Richard A, Margaritis A. Poly(glutamic acid) for biomedical applications. Crit. Rev. Biotechnol. 2001;21:219–232.10.1080/07388550108984171
  • Shih IL, Van YT. The production of poly-(gamma-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 2001;79:207–225.10.1016/S0960-8524(01)00074-8
  • Matsusaki M, Serizawa T, Kishida A, et al. Novel functional biodegradable polymer: synthesis and anticoagulant activity of poly(γ-Glutamic Acid) sulfonate (γ-PGA-sulfonate). Bioconjug. Chem. 2002;13:23–28.10.1021/bc010008d
  • Lv S, Li M, Tang Z, et al. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater. 2013;9:9330–9342.10.1016/j.actbio.2013.08.015
  • Gooding EA, Sharma S, Petty SA, et al. pH-dependent helix folding dynamics of poly-glutamic acid. Chem. Phys. 2013;422:115–123.10.1016/j.chemphys.2012.11.009
  • Lai FK, Li H. Modeling of effect of initial fixed charge density on smart hydrogel response to ionic strength of environmental solution. Soft Matter. 2010;6:311–320.10.1039/B913841B
  • Liao ZX, Hsiao CW, Ho YC, et al. Disulfide bond-conjugated dual PEGylated siRNAs for prolonged multiple gene silencing. Biomaterials. 2013;34:6930–6937.10.1016/j.biomaterials.2013.05.049
  • Xiong Y, Jiang W, Shen Y, et al. A Poly(γ, l-glutamic acid)-citric acid based nanoconjugate for cisplatin delivery. Biomaterials. 2012;33:7182–7193.10.1016/j.biomaterials.2012.06.071
  • Matsusaki M, Yoshida H, Akashi M. The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach. Biomaterials. 2007;28:2729–2737.10.1016/j.biomaterials.2007.02.015
  • Valliant EM, Romer F, Wang D, et al. Bioactivity in silica/poly(γ-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomater. 2013;9:7662–7671.10.1016/j.actbio.2013.04.037
  • Piepoli T, Mennuni L, Zerbi S, et al. Glutamate signaling in chondrocytes and the potential involvement of NMDA receptors in cell proliferation and inflammatory gene expression. Osteoarthr. Cartilage. 2009;17:1076–1083.10.1016/j.joca.2009.02.002
  • Salter DM, Millward-Sadler SJ, Nuki G, et al. Integrin-interleukin-4 mechanotransduction pathways in human chondrocytes. Clin. Orthop. Relat. R. 2001;391:S49–S60.
  • Ramage L, Martel MA, Hardingham GE, et al. NMDA receptor expression and activity in osteoarthritic human articular chondrocytes. Osteoarthr. Cartilage. 2008;16:1576–1584.10.1016/j.joca.2008.04.023
  • Zeng W, Hu WK, Li H, et al. Preparation and characterization of Poly(γ-glutamic acid) hydrogels as potential tissue engineering scaffolds. Chin. J. Polym. Sci. 2014;32:1507–1514.10.1007/s10118-014-1536-4
  • Fan CJ, Liao LQ, Zhang C, et al. A tough double network hydrogel for cartilage tissue engineering. J. Mater. Chem. B. 2013;1:4251–4258.10.1039/c3tb20600a
  • Peppas NA, Hilt JZ, Khademhosseini A, et al. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 2006;18:1345–1360.10.1002/(ISSN)1521-4095
  • Wieland JA, Houchin-Ray TL, Shea LD. Non-viral vector delivery from PEG-hyaluronic acid hydrogels. J. Controlled Release. 2007;120:233–241.10.1016/j.jconrel.2007.04.015
  • Varghese S, Lele AK, Mashelkar RA. Designing new thermoreversible gels by molecular tailoring of hydrophilic-hydrophobic interactions. J. Chem. Phys. 2000;112:3063–3070.10.1063/1.480881
  • Zhao Y, Kang J, Tan TW. Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid). Polymer. 2006;47:7702–7710.
  • Rasool N, Yasin T, Heng JYY, et al. Synthesis and characterization of novel pH−, ionic strength and temperature- sensitive hydrogel for insulin delivery. Polymer. 2010;51:1687–1693.10.1016/j.polymer.2010.02.013
  • Schott H. Swelling kinetics of polymers. J. Macromol. Sci. B. 1992;31:1–9.10.1080/00222349208215453
  • Schott H. Kinetics of swelling of polymers and their gels. J. Pharm. Sci. 1992;81:467–470.10.1002/jps.2600810516
  • Rydon HN. Polypeptides. Part X. The optical rotatory dispersion of poly-γ-D-glutamic acid. J. Chem. Soc. (Resumed). 1964;1328–1333.
  • Mchedlov‐Petrossyan NO, Vodolazkaya NA, Doroshenko AO. Ionic equilibria of fluorophores in organized solutions: the influence of micellar microenvironment on protolytic and photophysical properties of rhodamine B. J. Fluoresc. 2003;13:235–248.10.1023/A:1025089916356
  • Brannon-Peppas L, Peppas NA. Solute and penetrant diffusion in swellable polymers. IX. The mechanisms of drug release from ph-sensitive swelling-controlled systems. J. Controlled Release. 1989;8:267–274.10.1016/0168-3659(89)90048-5
  • Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Controlled Release. 1987;5:23–36.
  • Candela T, Fouet A. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 2006;60:1091–1098.10.1111/mmi.2006.60.issue-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.