235
Views
2
CrossRef citations to date
0
Altmetric
Articles

A double-lyophilization method for the preparation of CS/GO-COOH scaffold and its application in blood detoxification

, , , , , , & show all
Pages 1788-1807 | Received 19 Jun 2016, Accepted 14 Sep 2016, Published online: 10 Oct 2016

References

  • Duranton F, Cohen G, De SR, et al. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012;23:1258–1270.10.1681/ASN.2011121175
  • Ichimura Y, Takamatsu H, Ideuchi H, et al. Plasma concentrations of anionic uremic toxins in hemodialysis patients and their effects on protein binding of pravastatin. Yakugaku Zasshi. 2015;135:821–828.10.1248/yakushi.14-00244
  • Zhu X, Liu Y, Zhou C, et al. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon. 2014;77:627–636.10.1016/j.carbon.2014.05.067
  • Namekawa K, Tokoroschreiber M, Aoyagi T, et al. Fabrication of zeolite-polymer composite nanofibers for removal of uremic toxins from kidney failure patients. Biomater. Sci. 2014;2:674–679.10.1039/c3bm60263j
  • Goto S, Yoshiya K, Kita T, et al. Uremic toxins and oral adsorbents. Ther. Apher. Dial. 2011;15:132–134.10.1111/tap.2011.15.issue-2
  • Vanholder R, De Smet R, Glorieux G, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–1943.10.1046/j.1523-1755.2003.00924.x
  • Davankov V, Pavlova L, Tsyurupa M, et al. Polymeric adsorbent for removing toxic proteins from blood of patients with kidney failure. J. Chromatogr. B Biomed. Sci. Appl. 2000;739:73–80.10.1016/S0378-4347(99)00554-X
  • Winchester JF. Dialysis techniques: hemoperfusion. Netherlands: Springer; 2004. p. 725–738.
  • Teng N, Liang XY, Liu CJ, et al. Adsorption performance of pitch-based spherical activated carbons for several physiological molecules. New Carbon Mater. 2006;21:326–330.
  • Deng XP, Wang T, Zhao F, et al. Poly(ether sulfone)/activated carbon hybrid beads for creatinine adsorption. J. Appl. Polym. Sci. 2007;103:1085–1092.10.1002/(ISSN)1097-4628
  • Zhu XD, Liu YC, Zhou C, et al. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline. Carbon. 2014;77:627–636.10.1016/j.carbon.2014.05.067
  • Gura V, Ezon CJ, Beizai M. Carbon dioxide gas removal from a fluid circuit of a dialysis device. US patent 8,034,161[P]. 2012.
  • Nie C, Ma L, Xia Y, et al. Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. J. Membr. Sci. 2015;475:455–468.10.1016/j.memsci.2014.11.005
  • Dai Q, Ren J, Kong W, et al. Adsorption kinetics and thermodynamics of cellulose dinitrobenzoate prepared in ionic liquid for the removal of creatinine. Bioresources. 2015;10:3666–3681.
  • Mansur S, Othman MHD, Ismail A, et al. Investigation on the effect of spinning conditions on the properties of hollow fiber membrane for hemodialysis application. J Appl Polym Sci. 2016;133:43633–43634.
  • Tetali SD, Jankowski V, Luetzow K, et al. Adsorption capacity of poly (ether imide) microparticles to uremic toxins. Clin. Hemorheol. Micro. 2015;61:657–665.
  • Goto S, Yoshiya K, Kita T, et al. Uremic toxins and oral adsorbents. Ther. Apher. Dial. 2011;15:132–134.10.1111/tap.2011.15.issue-2
  • Wernert V, Schäf O, Faure V, et al. Adsorption of the uremic toxin p-cresol onto hemodialysis membranes and microporous adsorbent zeolite silicalite. J. Biotechnol. 2006;123:164–173.10.1016/j.jbiotec.2005.11.009
  • Sato Y. Examples of Chentsov type stationary stable processes in Rosinski’s representation. Abstr. Appl. Anal. 2004;10:533–545.
  • Akar ST, San E, Akar T. Chitosan–alunite composite: an effective dye remover with high sorption, regeneration and application potential. Carbohydr. Polym. 2016;143:318–326.10.1016/j.carbpol.2016.01.066
  • Vakili M, Rafatullah M, Ibrahim MH, et al. Chitosan hydrogel beads impregnated with hexadecylamine for improved reactive blue 4 adsorption. Carbohydr. Polym. 2016;137:139–146.10.1016/j.carbpol.2015.09.017
  • Hastuti B, Masykur A, Hadi S. Modification of chitosan by swelling and crosslinking using epichlorohydrin as heavy metal Cr(VI) adsorbent in batik industry wastes. 2016;107. doi:10.1088/1757-899X/107/1/012020.
  • Zhou G, Li Y, Zhang L, et al. Preparation and characterization of nano-hydroxyapatite/chitosan/konjac glucomannan composite. J. Biomed. Mater. Res. A. 2007;83:931–939.10.1002/(ISSN)1552-4965
  • Niu X, Fan Y, Liu X, et al. Repair of bone defect in femoral condyle using microencapsulated chitosan, nanohydroxyapatite/collagen and poly (l-lactide)-based microsphere-scaffold delivery system. Artif. Organs. 2011;35:119–128.10.1111/aor.2011.35.issue-7
  • Sainitya R, Sriram M, Kalyanaraman V, et al. Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int. J. Biol. Macromol. 2015;80:481–488.10.1016/j.ijbiomac.2015.07.016
  • Shih C-M, Shieh Y-T, Twu Y-K. Preparation and characterization of cellulose/chitosan blend films. Carbohydr. Polym. 2009;78:169–174.10.1016/j.carbpol.2009.04.031
  • Naseri N, Mathew AP, Girandon L, et al. Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose. 2015;22:521–534.10.1007/s10570-014-0493-y
  • Auta M, Hameed B. Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J. 2014;237:352–361.10.1016/j.cej.2013.09.066
  • Huang Y, Huang J, Cai J, et al. Carboxymethyl chitosan/clay nanocomposites and their copper complexes: fabrication and property. Carbohydr. Polym. 2015;134:390–397.10.1016/j.carbpol.2015.07.089
  • Song K, Gao A, Cheng X, et al. Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity. Carbohydr. Polym. 2015;130:381–387.10.1016/j.carbpol.2015.05.023
  • Liu Y-L, Chen W-H, Chang Y-H. Preparation and properties of chitosan/carbon nanotube nanocomposites using poly (styrene sulfonic acid)-modified CNTs. Carbohydr. Polym. 2009;76:232–238.10.1016/j.carbpol.2008.10.021
  • Liu H, Gong C, Wang J, et al. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydr. Polym. 2016;136:1379–1385.10.1016/j.carbpol.2015.09.085
  • Xing K, Shen X, Zhu X, et al. Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. Int. J. Biol. Macromol. 2016;82:830–836.10.1016/j.ijbiomac.2015.09.074
  • Hu Y, Du Y, Wang X, et al. Self-aggregation of water-soluble chitosan and solubilization of thymol as an antimicrobial agent. J. Biomed. Mater. Res. A. 2009;90:874–881.10.1002/jbm.a.v90a:3
  • Yang Y, Wang S, Wang Y, et al. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv. 2014;32:1301–1316.10.1016/j.biotechadv.2014.07.007
  • Wang X, Zhou N, Yuan J, et al. Antibacterial and anticoagulation properties of carboxylated graphene oxide–lanthanum complexes. J. Mater. Chem. 2012;22:1673–1678.10.1039/C1JM13360H
  • Fan L, Luo C, Sun M, et al. Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour. Technol. 2012;114:703–706.10.1016/j.biortech.2012.02.067
  • Zuo P, Li X, Dominguez DC, et al. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip. 2013;13:3921–3928.10.1039/c3lc50654a
  • Li J, Liu M, Kong L, et al. Advanced asymmetric supercapacitors based on Ni3(PO4)2@ GO and Fe2O3@ GO electrodes with high specific capacitance and high energy density. RSC Adv. 2015;5:41721–41728.10.1039/C5RA06050H
  • Huang H, Chen P, Zhang X, et al. Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity. Small. 2013;9:1397–1404.10.1002/smll.201202965
  • Joshi R, Carbone P, Wang F, et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science. 2014;343:752–754.10.1126/science.1245711
  • Štengl V, Bakardjieva S, Bakardjiev M, et al. Carborane functionalized graphene oxide, a precursor for conductive self-assembled monolayers. Carbon. 2014;67:336–343.10.1016/j.carbon.2013.10.003
  • Zhou T, Zhang B, Wei P, et al. Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials. 2014;35:9833–9843.10.1016/j.biomaterials.2014.08.033
  • Xue B, Zhu J, Liu N, et al. Facile functionalization of graphene oxide with ethylenediamine as a solid base catalyst for Knoevenagel condensation reaction. Catal. Commun. 2015;64:105–109.10.1016/j.catcom.2015.02.003
  • Lin Z, Liu Y, Wong C-p. Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film. Langmuir. 2010;26:16110–16114.10.1021/la102619n
  • Sun W, Ju X, Zhang Y, et al. Application of carboxyl functionalized graphene oxide as mimetic peroxidase for sensitive voltammetric detection of H 2 O 2 with 3, 3′, 5, 5′-tetramethylbenzidine. Electrochem. Commun. 2013;26:113–116.10.1016/j.elecom.2012.09.032
  • Liu Y, Yu D, Zeng C, et al. Biocompatible graphene oxide-based glucose biosensors. Langmuir. 2010;26:6158–6160.10.1021/la100886x
  • Wang X, Zhou N, Yuan J, et al. Antibacterial and anticoagulation properties of carboxylated graphene oxide–lanthanum complexes. J. Mater. Chem. 2011;22:1673–1678.
  • Chen X, Lu A, Qu G. Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent. Ceram. Int. 2013;39:1923–1929.10.1016/j.ceramint.2012.08.042
  • Vikas K, Ram S, Ram NR, et al. Process parameters and foaming agents used in manufacturing of aluminium metallic foams: a review. Int. J. Sci. Eng. Technol. 2015;4:505–510.10.17950/ijset
  • Chand N, Fahim M, Sharma P, et al. Influence of foaming agent on wear and mechanical properties of surface modified rice husk filled polyvinylchloride. Wear. 2012;278:83–86.10.1016/j.wear.2012.01.002
  • Travlou NA, Kyzas GZ, Lazaridis NK, et al. Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir. 2013;29:1657–1668.10.1021/la304696y
  • Zhang L, Luo H, Liu P, et al. A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr(VI) in aqueous solutions. Int. J. Biol. Macromol. 2016;87:586–596.10.1016/j.ijbiomac.2016.03.027
  • Stankovich S, Piner RD, Chen X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 2006;16:155–158.10.1039/B512799H
  • Julianto TS, Mumpuni RA. Chitosan and N-Alkyl chitosan as a heterogeneous based catalyst in the transesterification reaction of used cooking oil. Mater. Sci. Eng. 2016;107. doi:10.1088/1757-899X/107/1/012004.
  • Dharupaneedi SP, Anjanapura RV, Han JM, et al. Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind. Eng. Chem. Res. 2014;53:14474–14484.10.1021/ie502751h
  • Siengchin S, Karger-Kocsis J. Structure and creep response of toughened and nanoreinforced polyamides produced via the latex route: effect of nanofiller type. Compos. Sci. Technol. 2009;69:677–683.10.1016/j.compscitech.2009.01.003
  • Zhang N, Qiu H, Si Y, et al. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon. 2011;49:827–837.10.1016/j.carbon.2010.10.024
  • Shahab Faghihi MG, Karimi Alireza, Salarian Reza. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J. Appl. Phys. 2014;115:83513–83516.10.1063/1.4864153
  • Song Q, Li KZ, Zhang LL, et al. Increasing mechanical strength retention rate of carbon/carbon composites after graphitization by grafting straight carbon nanotubes radially onto carbon fibers. Mater. Sci. Eng. A. 2013;560:831–836.10.1016/j.msea.2012.10.046
  • Van Hoang Luan HNT, Le Thuy Hoa, Nguyen Thi Minh Hien, et al. Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor. J. Mater. Chem. A. 2013;1:208–211.
  • Song C, Wu S, Cheng M, et al. Adsorption studies of coconut shell carbons prepared by koh activation for removal of lead(II) from aqueous solutions. Sustainability. 2013;6:86–98.10.3390/su6010086
  • Schmidt M, Amrhein K, Braun T, et al. Nanotechnological improvement of structural materials – impact on material performance and structural design. Cem. Concr. Compos. 2013;36:3–7.10.1016/j.cemconcomp.2012.11.003
  • Zhang Z, Zhang L, Wang S, et al. A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization–reduction approach. Polymer. 2001;42:8315–8318.10.1016/S0032-3861(01)00285-3
  • Abdel-Mohsen AM, Abdel-Rahman RM, Fouda MMG, et al. Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite. Carbohydr. Polym. 2014;102:238–245.10.1016/j.carbpol.2013.11.040
  • Zou ZG. Preparation of graphene oxide by ultrasound-assisted hummers method. Chin. J. Inorg. Chem. 2011;27:1753–1757.
  • Wirey M, Hunt M, Blensdorf T, et al. Induced microphase separation in hybrid composite polymer electrolytes based on poly(acrylonitrile-r-butadienes) and ionic liquids. Macromol. Chem. Phy. 2016;217:794−803.
  • Chen D, Liu Y, Huang C. Synergistic effect between POSS and fumed silica on thermal stabilities and mechanical properties of room temperature vulcanized (RTV) silicone rubbers. Polym. Degrad. Stab. 2012;97:308–315.10.1016/j.polymdegradstab.2011.12.016
  • Ji F, Xue S, Dai W. Reliability studies of Cu/Al joints brazed with Zn–Al–Ce filler metals. Mater. Des. 2012;42:156–163.
  • Siengchin S, Karger-Kocsis J. Structure, mechanical, and fracture properties of nanoreinforced and HNBR-toughened polyamide-6. J. Appl. Polym. Sci. 2012;123:897–902.10.1002/app.34526
  • Matos G, Arruda M. Vermicompost as natural adsorbent for removing metal ions from laboratory effluents. Process Biochem. 2003;39:81–88.10.1016/S0032-9592(02)00315-1
  • Coates NE, Yee SK, McCulloch B, et al. Effect of interfacial properties on polymer & ndash; nanocrystal thermoelectric transport. Adv. Mater. 2013;25:1629–1633.10.1002/adma.201203915
  • Xing Q, Yates K, Vogt C, et al. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci. Rep. 2014;4:4706.
  • Chang TE, Kisliuk A, Rhodes SM, et al. Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer. 2006;47:7740–7746.10.1016/j.polymer.2006.09.013
  • Liang J, Yi H, Long Z, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 2009;19:2297–2302.10.1002/adfm.v19:14
  • Liu R, Liang S, Tang XZ, et al. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 2012;22:14160–14167.10.1039/c2jm32541a
  • Feng L, K-z Li, Z-s Si, et al. Compressive and interlaminar shear properties of carbon/carbon composite laminates reinforced with carbon nanotube-grafted carbon fibers produced by injection chemical vapor deposition. Mater. Sci. Eng. A. 2015;626:449–457.10.1016/j.msea.2014.12.044
  • Shanmugasundaram N, Ravichandran P, Reddy PN, et al. Collagen–chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials. 2001;22:1943–1951.10.1016/S0142-9612(00)00220-9
  • Vanholder R, De Smet R, Glorieux G, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–1943.10.1046/j.1523-1755.2003.00924.x
  • Rinaudo M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 2006;31:603–632.10.1016/j.progpolymsci.2006.06.001
  • Matos GD, Arruda MAZ. Vermicompost as natural adsorbent for removing metal ions from laboratory effluents. Process Biochem. 2003;39:81–88.10.1016/S0032-9592(02)00315-1
  • Kim YK, Kim MH, Min DH. Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem. Commun. 2011;47:3195–3197.10.1039/c0cc05005a
  • Omori M, Yokomizo K, Hashida T, et al. Structural characterization and frictional properties of carbon nanotube/alumina composites prepared by precursor method. Mater. Sci. Eng. B. 2008;148:265–269.
  • Feng YQ, Liang ZY, Meng SX. Adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose under biocatalysis of immobilized urease: equilibrium and kinetic. Biochem. J. 2005;24:65–72.10.1042/BJ20050195
  • Hussain MR, Devi RR, Maji TK. Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iran. Polym. J. 2012;21:473–479.10.1007/s13726-012-0051-0
  • Fissell WH, Roy S, Davenport A. Achieving more frequent and longer dialysis for the majority: wearable dialysis and implantable artificial kidney devices. Kidney Int. 2013;84:256–264.10.1038/ki.2012.466
  • Gura V, Macy AS, Beizai M, et al. Technical breakthroughs in the wearable artificial kidney (WAK). Clin. J. Am. Soc. Nep. 2009;4:1441–1448.10.2215/CJN.02790409
  • Cheah WK, Ishikawa K, Othman R, et al. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: a review. J. Biomed. Mater. Res. B Appl. Biomater. 2016. doi:10.1002/jbm.b.33475.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.