532
Views
36
CrossRef citations to date
0
Altmetric
Articles

Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone

, , , &
Pages 1860-1879 | Received 05 Apr 2016, Accepted 20 Sep 2016, Published online: 11 Oct 2016

References

  • Alishiri M, Shojaei A, Abdekhodaie MJ, et al. Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Mater. Sci. Eng. C: Mater. Biol. Appl. 2014;42:763–773.10.1016/j.msec.2014.05.056
  • Jing Q, Law JY, Tan LP, et al. Preparation, characterization and properties of polycaprolactone diol-functionalized multi-walled carbon nanotube/thermoplastic polyurethane composite. Compos. Part A: Appl. Sci. Manuf. 2015;70:8–15.10.1016/j.compositesa.2014.10.028
  • Zia KM, Bhatti HN, Bhatti IA. Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React. Funct. Polym. 2007;67:675–692.10.1016/j.reactfunctpolym.2007.05.004
  • Cho SM, Kim BK. Thermo-sensitive hydrogels based on interpenetrating polymer networks made of poly(N-isopropylacrylamide) and polyurethane. J. Biomater. Sci. Polym. Ed. 2010;21:1051–1068.10.1163/092050609X12457428830438
  • Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol. Annu. Rev. 2006;12:301–347.10.1016/S1387-2656(06)12009-8
  • Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2:307–344.
  • Chashmejahanbin MR, Daemi H, Barikani M, et al. Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene. Appl. Surf. Sci. 2014;317:688–695.10.1016/j.apsusc.2014.08.094
  • Bat E, Zhang Z, Feijen J, et al. Biodegradable elastomers for biomedical applications and regenerative medicine. Regen. Med. 2014;9:385–398.10.2217/rme.14.4
  • Pergal MV, Antic VV, Tovilovic G, et al. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(-caprolactone)-block-poly(dimethylsiloxane)-block-poly(-caprolactone). J. Biomater. Sci. Polym. Ed. 2012;23:1629–1657.
  • Liu Y, Inoue Y, Sakata S, et al. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. J. Biomater. Sci. Polym. Ed. 2014;25:474–486.10.1080/09205063.2013.873282
  • He W, Benson R. Polymeric biomaterials. In: Kutz M, editor. Applied plastics engineering handbook. 1st ed. New York (NY): Elsevier; 2011. p. 87–107.10.1016/B978-1-4377-3514-7.10010-8
  • Murray KA, Kennedy JE, McEvoy B, et al. The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. Eur. Polym. J. 2013;49:1782–1795.10.1016/j.eurpolymj.2013.03.034
  • Bakhshi H, Yeganeh H, Yari A, et al. Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. J. Mater. Sci. 2014;49:5365–5377.10.1007/s10853-014-8244-x
  • Estrada A, Herrera J. Síntesis de materiales a base de uretano reforzados con nanopartículas metálicas. I. Síntesis y caracterización [Synthesis of nanocomposites of a urethane–type polymer incorporated with metalic nanoparticles. I. Synthesis and characterization]. Rev Iberoam Polímeros. 2013;14:28–38.
  • Kucinska-Lipka J, Gubanska I, Janik H, et al. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater. Sci. Eng. C: Mater. Biol. Appl. 2015;46:166–176.10.1016/j.msec.2014.10.027
  • Li Y, Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol. Biosci. 2007;7:921–928.10.1002/(ISSN)1616-5195
  • van Minnen B, Stegenga B, van Leeuwen MB, et al. A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products. J. Biomed. Mater. Res. A. 2006;76A:377–385.10.1002/(ISSN)1552-4965
  • Park H, Gong M-S, Park J-H, et al. Silk fibroin-polyurethane blends: physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomater. 2013;9:8962–8971.10.1016/j.actbio.2013.07.013
  • Tsai M-C, Hung K-C, Hung S-C, et al. Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids Surf. B. 2015;125:34–44.10.1016/j.colsurfb.2014.11.003
  • Wang W, Guo Y, Otaigbe J. Synthesis and characterization of novel biodegradable and biocompatible poly(ester-urethane) thin films prepared by homogeneous solution polymerization. Polymer. 2008;49:4393–4398.10.1016/j.polymer.2008.07.057
  • Zhou L, Liang D, He X, et al. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials. 2012;33:2734–2745.10.1016/j.biomaterials.2011.11.009
  • Chen R, Zhang C, Kessler MR. Polyols and polyurethanes prepared from epoxidized soybean oil ring-opened by polyhydroxy fatty acids with varying OH numbers. J. Appl. Polym. Sci. 2014;132:1–10.
  • St John KR. The use of compliant layer prosthetic components in orthopedic joint repair and replacement: a review. J. Biomed. Mater. Res. Part. B. Appl. Biomater. 2014;102:1332–1341.10.1002/jbm.b.v102.6
  • Adolph EJ, Pollins AC, Cardwell NL, et al. Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model. J. Biomater. Sci. Polym. Ed. 2014;25:1973–1985.10.1080/09205063.2014.965997
  • Rajan KP, Al-Ghamdi A, Parameswar R, et al. Blends of thermoplastic polyurethane and polydimethylsiloxane rubber: assessment of biocompatibility and suture holding strength of membranes. Int. J. Biomater. 2013;2013:1–7.10.1155/2013/240631
  • Rocco KA, Maxfield MW, Best CA, et al. In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Eng. Part. B. 2014;20:628–640.10.1089/ten.teb.2014.0123
  • Rodríguez-Galán A, Franco L, Puiggal J. Biodegradable polyurethanes and poly(ester amide)s. In: Lendlein A, Sisson A, editors. Handbook of biodegradable polymers. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 133–154.10.1002/9783527635818
  • Rodríguez A, Rodríguez Y. Biodegradación de poliuretao mediante el uso del hongo Pestalotiopsis microspora [Polyurethane degradation using the mushroom Pestalotiopsis microspora] [ research]. Santander (CO): Instituto Universitario de la Paz; 2015.
  • McBane JE, Sharifpoor S, Cai K, et al. Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications. Biomaterials. 2011;32:6034–6044.10.1016/j.biomaterials.2011.04.048
  • da Silva GR, da Silva-Cunha Jr. A, Behar-Cohen F, et al. Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. Polym. Degrad. Stab. 2010;95:491–499.10.1016/j.polymdegradstab.2010.01.001
  • Han J, Chen B, Ye L, et al. Synthesis and characterization of biodegradable polyurethane based on poly(e-caprolactone) and L-lysine ethyl ester diisocyanate. Front. Mater. Sci. Chin. 2009;3:25–32.10.1007/s11706-009-0013-4
  • Sosnik A, Gotelli G. Aplicaciones de la tecnología de radiación de microondas en la síntesis de biomateriales [Technology applications of microwave radiation in the synthesis of biomaterials]. In: Coimbra University, editor. Biomateriales aplicados al diseño de sistemas terapéuticos avanzados. Argentina; 2015. p. 55.
  • Vatankhah E, Semnani D, Prabhakaran MP, et al. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater. 2014;10:709–721.10.1016/j.actbio.2013.09.015
  • Larraza Í. Desarrollo de nuevas estrategias para la preparación de nanocomposites con propriedades antimicrobianas [Development of new strategies for the preparation of nanocomposites with antimicrobial properties] [dissertation]. Madrid (ES): Universidad Autónoma de Madrid; 2012.
  • Wang Y, Yu Y, Zhang L, et al. One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance. J. Biomater. Sci. Polym. Ed. 2015;26:459–467.10.1080/09205063.2015.1023242
  • Han J, Cao R-W, Chen B, et al. Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on L-lysine diisocyanate and L-lysine chain extender. J. Biomed. Mater. Res. A. 2011;96A:705–714.10.1002/jbm.a.33023
  • Valero MF, Ortegón Y. Polyurethane elastomers-based modified castor oil and poly(e-caprolactone) for surface-coating applications: synthesis, characterization, and in vitro degradation. J. Elastomers. Plast. 2015;47:360–369.
  • Kanmani P, Rhim J-W. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll. 2014;35:644–652.
  • Pignatello R, Impallomeni G, Pistarà V, et al. New amphiphilic derivatives of poly(ethylene glycol) (PEG) as surface modifiers of colloidal drug carriers. III. Lipoamino acid conjugates with carboxy- and amino-PEG(5000) polymers. Mater. Sci. Eng. C. 2015;46:470–481.10.1016/j.msec.2014.10.054
  • Bakhshi H, Yeganeh H, Mehdipour-Ataei S. Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups. J. Biomed. Mater. Res. A. 2013;101:1599–1611.
  • Han W, Tu M, Zeng R, et al. Preparation, characterization and cytocompatibility of polyurethane/cellulose based liquid crystal composite membranes. Carbohydr. Polym. 2012;90:1353–1361.10.1016/j.carbpol.2012.07.004
  • Calvo-Correas T, Santamaria-Echart A, Saralegi A, et al. Thermally-responsive biopolyurethanes from a biobased diisocyanate. Eur. Polym. J. 2015;70:173–185.10.1016/j.eurpolymj.2015.07.022
  • Guan J, Sacks MS, Beckman EJ, et al. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials. 2004;25:85–96.10.1016/S0142-9612(03)00476-9
  • Kara F, Aksoy EA, Yuksekdag Z, et al. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydr. Polym. 2014;112:39–47.10.1016/j.carbpol.2014.05.019
  • Zhang C, Ding R, Kessler MR. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes. Macromol. Raopid. Commun. 2014;35:1068–1074.
  • Yilgör E, Isik M, Söz CK, et al. Synthesis and structure-property behavior of polycaprolactone-polydimethylsiloxane-polycaprolactone triblock copolymers. Polymer. 2016;83:138–153.
  • Wu G-H, Hsu S. Synthesis of water-based cationic polyurethane for antibacterial and gene delivery applications. Colloids Surf. B. 2016;146:825–832.
  • Sivakumar PM, Cometa S, Alderighi M, et al. Chalcone embedded polyurethanes as a biomaterial: Synthesis, characterization and antibacterial adhesion. Carbohydr. Polym. 2012;87:353–360.
  • Hill MJ, Cheah C, Sarkar D. Interfacial energetics approach for analysis of endothelial cell and segmental polyurethane interactions. Colloids Surf. B. 2016;144:46–56.
  • Touchet TJ. Hierarchal structure–property relationships of segmented polyurethanes. In: Stuart L. Cooper, editor. Advances in Polyurethane Biomaterials. Dublin (IR); 2016. p. 3.
  • Ibarboure E, Baron A, Papon E, et al. Self-assembly of graft polyurethanes having both crystallizable poly(ε-caprolactone) blocks and soft poly(n-butyl acrylate) segments. Thin. Solid. Films. 2009;517:3281–3286.
  • Valério A, Conti DS, Araújo PHH, et al. Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids Surf. B. 2015;135:35–41.
  • Gogoi S, Barua S, Karak N. Biodegradable and thermostable synthetic hyperbranched poly(urethane-urea)s as advanced surface coating materials. Prog. Org. Coat. 2014;77:1418–1427.10.1016/j.porgcoat.2014.04.021
  • Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 2013;38:584–671.
  • Spontón M, Casis N, Mazo P, et al. Biodegradation study by Pseudomonas sp. of flexible polyurethane foams derived from castor oil. Int. Biodeterior. Biodegrad. 2013;85:85–94.10.1016/j.ibiod.2013.05.019
  • Cherng JY, Hou TY, Shih MF, et al. Polyurethane-based drug delivery systems. Int. J. Pharm. 2013;450:145–162.10.1016/j.ijpharm.2013.04.063
  • Abedalwafa M, Wang F, Wang L, et al. Biodegradable poly-ε-caprolactone (PCL) for tissue engineering applications: a review. Rev. Adv. Mater. Sci. 2013;34:123–140.
  • Reddy TT, Kano A, Maruyama A, et al. Synthesis, characterization and drug release of biocompatible/biodegradable non-toxic poly(urethane urea)s based on poly(ε-caprolactone)s and lysine-based diisocyanate. J. Biomater. Sci. Polym. Ed. 2010;21:1483–1502.10.1163/092050609X12518804794785
  • Cauich-Rodríguez JV, Chan-Chan LH, Hernández-Sánchez F, et al. Degradation of polyurethanes for cardiovascular applications. In: Pignatello R, editor. Advances in biomaterials science and biomedical applications. Mexico: InTech; 2012. p. 51–82.
  • Woźniak P, Bil M, Ryszkowska J, et al. Candidate bone-tissue-engineered product based on human-bone-derived cells and polyurethane scaffold. Acta Biomater. 2010;6:2484–2493.10.1016/j.actbio.2009.10.022
  • Ortegón Y. Síntesis, caracterización y análisis de la degradabilidad de adhesivos tipo poliuretano obtenidos a partir del aceite de higuerilla modificado [Synthesis, characterization and analysis of degradability type polyurethane adhesives obtained from the modified castor oil] [master’s thesis]. Chía: Universidad de La Sabana; 2014.
  • Caixeta DS, Scarpa TH, Brugnera DF, et al. Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface. Ciência e Tecnol. Aliment. 2012;32:142–150.10.1590/S0101-20612012005000008
  • Perales-Alcacio JL, Santa-Olalla Tapia J, Mojica-Cardoso C, et al. HUVEC biocompatibility and platelet activation of segmented polyurethanes prepared with either glutathione or its amino acids as chain extenders. J. Biomater. Sci. Polym. Ed. 2013;24:1601–1617.10.1080/09205063.2013.782804
  • Bakhshi H, Yeganeh H, Mehdipour-Ataei S, et al. Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Mater. Sci. Eng. C. 2013;33:153–164.10.1016/j.msec.2012.08.023
  • Domanska A, Boczkowska A. Biodegradable polyurethanes from crystalline prepolymers. Polym. Degrad. Stab. 2014;108:175–181.
  • Tijing LD, Ruelo MTG, Amarjargal A, et al. One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide)) - Polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning. Mater. Chem. Phys. 2012;134:557–561.10.1016/j.matchemphys.2012.03.037
  • Clauss M, Trampuz A, Borens O, et al. Biofilm formation on bone grafts and bone graft substitutes: comparison of different materials by a standard in vitro test and microcalorimetry. Acta Biomater. 2010;6:3791–3797.10.1016/j.actbio.2010.03.011
  • Francolini I, Piozzi A. 12 – Antimicrobial polyurethanes for intravascular medical devices. Adv. Polyurethane Biomater. 2016:349–385.
  • Xue Y, Xiao H, Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci. 2015;16:3626–3655.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.