592
Views
32
CrossRef citations to date
0
Altmetric
Articles

Combining mechanical foaming and thermally induced phase separation to generate chitosan scaffolds for soft tissue engineering

, , &
Pages 207-226 | Received 31 Aug 2016, Accepted 07 Nov 2016, Published online: 30 Nov 2016

References

  • Ko J, Mohtaram NK, Ahmed F, et al. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. J Biomater Sci Polym Ed. 2014;25:1–17.10.1080/09205063.2013.830913
  • Stella JA, D’Amore A, Wagner WR, et al. On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomater. 2010;6:2365–2381. 10.1016/j.actbio.2010.01.001. PubMed PMID: PMC2878661.
  • Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010;12:188–196. 10.1208/s12248-010-9175-3. PubMed PMID: PMC2844517.
  • Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Pt B: Rev. 2013;19:485–502.10.1089/ten.teb.2012.0437
  • Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering – a review. Carbohydr Polym. 2013;92:1262–1279. 10.1016/j.carbpol.2012.10.028.
  • Sell S, Barnes C, Smith M, et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polym Int. 2007;56:1349–1360. 10.1002/pi.2344.
  • Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689. 10.1016/j.cell.2006.06.044.
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64Suppl:18–23. 10.1016/j.addr.2012.09.010.
  • Malafaya PB, Silva GA, Reis RL. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–233. 10.1016/j.addr.2007.03.012.
  • Boucard N, Viton C, Agay D, et al. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials. 2007;28:3478–3488. 10.1016/j.biomaterials.2007.04.021.
  • Arvanitoyannis IS, Kassaveti A. Fish industry waste: treatments, environmental impacts, current and potential uses. Int J Food Sci Technol. 2008;43:726–745. 10.1111/j.1365-2621.2006.01513.x.
  • Ravi Kumar MNV. A review of chitin and chitosan applications. Reac Funct Polym. 2000;46:1–27. 10.1016/S1381-5148(00)00038-9.
  • Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev. 2001;52:105–115. 10.1016/s0169-409x(01)00189-2.
  • Ueno H, Yamada H, Tanaka I, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials. 1999;20:1407–1414. 10.1016/s0142-9612(99)00046-0.
  • Ma L, Gao C, Mao Z, et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24:4833–4841. 10.1016/S0142-9612(03)00374-0.
  • Li Z, Ramay HR, Hauch KD, et al. Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26:3919–3928. 10.1016/j.biomaterials.2004.09.062.
  • Zhang Y, Venugopal JR, El-Turki A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29:4314–4322.10.1016/j.biomaterials.2008.07.038
  • Tan H, Chu CR, Payne KA, et al. Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30:2499–2506.10.1016/j.biomaterials.2008.12.080
  • Yamane S, Iwasaki N, Majima T, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005;26:611–619.10.1016/j.biomaterials.2004.03.013
  • Cooper A, Bhattarai N, Zhang M. Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym. 2011;85:149–156.10.1016/j.carbpol.2011.02.008
  • Gingras M, Paradis I, Berthod F. Nerve regeneration in a collagen–chitosan tissue-engineered skin transplanted on nude mice. Biomaterials. 2003;24:1653–1661. 10.1016/S0142-9612(02)00572-0.
  • Rafat M, Li F, Fagerholm P, et al. PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials. 2008;29:3960–3972.10.1016/j.biomaterials.2008.06.017
  • Chen J, Li Q, Xu J, et al. Study on biocompatibility of complexes of collagen-chitosan-sodium hyaluronate and cornea. Artif Organs. 2005;29:104–113.10.1111/aor.2005.29.issue-2
  • Wang X, Li D, Wang W, et al. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials. 2003;24:3213–3220.10.1016/S0142-9612(03)00170-4
  • Lee SB, Kim YH, Chong MS, et al. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26:1961–1968.10.1016/j.biomaterials.2004.06.032
  • Cao Y, Mitchell G, Messina A, et al. The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo. Biomaterials. 2006;27:2854–2864. 10.1016/j.biomaterials.2005.12.015.
  • Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 1999;20:1783–1790.10.1016/S0142-9612(99)00073-3
  • Cao Y, Croll TI, O’Connor AJ, et al. Systematic selection of solvents for the fabrication of 3D combined macro-and microporous polymeric scaffolds for soft tissue engineering. J Biomater Sci Polym Ed. 2006;17:369–402.10.1163/156856206776374142
  • Kolesky DB, Truby RL, Gladman A, et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26:3124–3130.10.1002/adma.201305506
  • Annabi N, Mithieux SM, Weiss AS, et al. Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO 2. Biomaterials. 2010;31:1655–1665.10.1016/j.biomaterials.2009.11.051
  • Annabi N, Fathi A, Mithieux SM, et al. The effect of elastin on chondrocyte adhesion and proliferation on poly (ɛ-caprolactone)/elastin composites. Biomaterials. 2011;32:1517–1525. 10.1016/j.biomaterials.2010.10.024.
  • Ji C, Annabi N, Khademhosseini A, et al. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO 2. Acta Biomater. 2011;7:1653–1664.10.1016/j.actbio.2010.11.043
  • Keskar V, Marion NW, Mao JJ, et al. In vitro evaluation of macroporous hydrogels to facilitate stem cell infiltration, growth, and mineralization. Tissue Eng Part A. 2009;15:1695–1707.10.1089/ten.tea.2008.0238
  • Huh KM, Baek N, Park K. Enhanced swelling rate of poly (ethylene glycol)-grafted superporous hydrogels. J Bioact Compat Pol. 2005;20:231–243.10.1177/0883911505053378
  • Barbetta A, Carrino A, Costantini M, et al. Polysaccharide based scaffolds obtained by freezing the external phase of gas-in-liquid foams. Soft Matter. 2010;6:5213–5224.10.1039/c0sm00616e
  • Barbetta A, Rizzitelli G, Bedini R, et al. Porous gelatin hydrogels by gas-in-liquid foam templating. Soft Matter. 2010;6:1785–1792.10.1039/b920049e
  • Ross KA, Pyrak-Nolte LJ, Campanella OH. The effect of mixing conditions on the material properties of an agar gel – microstructural and macrostructural considerations. Food Hydrocolloid. 2006;20:79–87. 10.1016/j.foodhyd.2005.01.007.
  • Gibson L, Ashby M, Schajer G, et al, editors. The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences; The Royal Society: London; 1982.
  • Attenburrow G, Goodband R, Taylor L, et al. Structure, mechanics and texture of a food sponge. J Cereal Sci. 1989;9:61–70.
  • Hanselmann W, Windhab E. Flow characteristics and modelling of foam generation in a continuous rotor/stator mixer. J Food Eng. 1998;38:393–405.10.1016/S0260-8774(98)00129-0
  • Jones JR, Hench LL. Effect of surfactant concentration and composition on the structure and properties of sol-gel-derived bioactive glass foam scaffolds for tissue engineering. J Mater Sci. 2003;38:3783–3790. 10.1023/A:1025988301542.
  • de Barros Coelho M, Magalhães Pereira M. Sol-gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration. J Biomed Mater Res Pt B: Appl Biomater. 2005;75B:451–456.10.1002/(ISSN)1552-4981
  • Menon JU, Kona S, Wadajkar AS, et al. Effects of surfactants on the properties of PLGA nanoparticles. J Biomed Mater Res Pt A. 2012;100A:1998–2005. 10.1002/jbm.a.34040.
  • Chuanuwatanakul C, Tallon C, Dunstan DE, et al. Controlling the microstructure of ceramic particle stabilized foams: influence of contact angle and particle aggregation. Soft Matter. 2011;7:11464–11474.10.1039/c1sm06477k
  • Savina IN, Dainiak M, Jungvid H, et al. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold. J Biomater Sci Polym Ed. 2009;20:1781–1795.10.1163/156856208X386390
  • Henderson TM, Ladewig K, Haylock DN, et al. Cryogels for biomedical applications. J Mater Chem B. 2013;1:2682–2695.10.1039/c3tb20280a
  • Im O, Li J, Wang M, et al. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Int J Nanomed. 2012;7:2087–2099. 10.2147/IJN.S29743. PubMed PMID: PMC3356213.
  • Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res. 2001;55:304–312.10.1002/(ISSN)1097-4636
  • Bhat S, Kumar A. Cell proliferation on three-dimensional chitosan–agarose–gelatin cryogel scaffolds for tissue engineering applications. J Biosci Bioeng. 2012;114:663–670. 10.1016/j.jbiosc.2012.07.005.
  • O’Brien J, Wilson I, Orton T, et al. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267:5421–5426.10.1046/j.1432-1327.2000.01606.x
  • Henderson TM, Ladewig K, Haylock DN, et al. Formation and characterisation of a modifiable soft macro-porous hyaluronic acid cryogel platform. J Biomater Sci Polym Ed. 2015;26:881–897.10.1080/09205063.2015.1065597
  • Rosen M, Solash J. Factors affecting initial foam height in the Ross-Miles foam test. J Am Oil Chem Soc. 1969;46:399–402.10.1007/BF02545623
  • Morrison C, Schramm LL, Stasiuk EN. A dynamic foam method for the estimation of critical micelle concentrations at elevated temperatures and pressures. J Petrol Sci Eng. 1996;15:91–100.10.1016/0920-4105(95)00071-2
  • Goette EK. Theoretical considerations of detergency. J Colloid Sci. 1949;4:459–484.10.1016/0095-8522(49)90044-6
  • Lee MS, Kim J-C. Photo-responsive microspheres prepared using hydrophobically modified poly (vinyl alcohol)-coumarin conjugate. Colloid J. 2013;75:668–676.10.1134/S1061933X13060094
  • Sawyerr F, Deglon D, O’Connor C. Prediction of bubble size distribution in mechanical flotation cells. J S Afr I Min Metall(South Africa). 1998;98:179–185.
  • Paul EL, Atiemo-Obeng V, Kresta SM. Handbook of industrial mixing: science and practice. Hoboken (NJ): Wiley; 2004.
  • Gonzenbach UT, Studart AR, Tervoort E, et al. Tailoring the microstructure of particle-stabilized wet foams. Langmuir. 2006;23:1025–1032. 10.1021/la0624844.
  • Vijayaraghavan K, Nikolov A, Wasan D, et al. Foamability of liquid particle suspensions: a modeling study. Ind Eng Chem Res. 2009;48:8180–8185. 10.1021/ie801741q.
  • Gonzenbach UT, Studart AR, Tervoort E, et al. Stabilization of foams with inorganic colloidal particles. Langmuir. 2006;22:10983–10988. 10.1021/la061825a.
  • Rohenkohl H, Kohlus R, Campbell G, et al. Foaming of ice cream and the time stability of its bubble size distribution. In: Bubbles in food. St. Paul (MN): AACC International; 1999. p. 45–53.
  • Chang Y, Hartel RW. Stability of air cells in ice cream during hardening and storage. J Food Eng. 2002;55:59–70. 10.1016/S0260-8774(01)00242-4.
  • Monteiro OAC Jr., Airoldi C. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol. 1999;26:119–128. 10.1016/S0141-8130(99)00068-9.
  • Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AA, et al. Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym. 2009;76:472–481.10.1016/j.carbpol.2008.11.015
  • Ang TH, Sultana FSA, Hutmacher DW, et al. Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system. Mater Sci Eng: C. 2002;20:35–42. 10.1016/s0928-4931(02)00010-3.
  • Gobin AS, Froude VE, Mathur AB. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J Biomed Mater Res A. 2005;74A:465–473.10.1002/(ISSN)1552-4965
  • Chanda J, Kuribayashi R. Prevention of calcification and degeneration of biological tissue grafts for implantation in humans. Google Patents. 1997.
  • Jameela S, Misra A, Jayakrishnan A. Cross-linked chitosan microspheres as carriers for prolonged delivery of macromolecular drugs. J Biomater Sci Polym Ed. 1995;6:621–632.10.1163/156856294X00563
  • Lanza R, Langer R, Vacanti JP. Principles of tissue engineering. Amsterdam: Academic Press; 2011.
  • Cook KLK, Hartel RW. Mechanisms of ice crystallization in ice cream production. Compr Rev Food Sci F. 2010;9:213–222. 10.1111/j.1541-4337.2009.00101.x.
  • Tatterson GB. Fluid mixing and gas dispersion in agitated tanks. New York: McGraw-Hill; 1991.
  • Discher DE, Janmey P, Wang Y-I. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–1143. 10.1126/science.1116995.
  • Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14:289–301.10.1038/nri3646
  • abcam. CytoPainter Cell Tracking Staining Kit – Deep Red Fluorescence (ab138894) 2015 [17/08/2015]. Available from: http://www.abcam.com/cytopainter-cell-tracking-staining-kit-deep-red-fluorescence-ab138894.html
  • Hakkinen KM, Harunaga JS, Doyle AD, et al. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng Part A. 2010;17:713–724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.