414
Views
22
CrossRef citations to date
0
Altmetric
Articles

Green synthesis of tea Ag nanocomposite hydrogels via mint leaf extraction for effective antibacterial activity

, , , , &
Pages 1588-1602 | Received 11 Feb 2017, Accepted 23 May 2017, Published online: 22 Jun 2017

References

  • Elvira C, Mano J, San Román J, et al. Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials. 2002;23:1955–1966.10.1016/S0142-9612(01)00322-2
  • Kopeček J. Hydrogel biomaterials: a smart future? Biomaterials. 2007;28:5185–5192.10.1016/j.biomaterials.2007.07.044
  • Peppas NA, Bures P, Leobandung W, et al. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.10.1016/S0939-6411(00)00090-4
  • Lowman AM, Peppas N. Hydrogels. In: Mathiowitz E, editor. Encyclopedia of controlled drug delivery. Vol. 1. New York: Wiley; 1999. p. 397–418.
  • Park JH, Lee S, Kim J-HH, et al. Polymeric nanomedicine for cancer therapy. Prog Polym Sci. 2008;33:113–137.10.1016/j.progpolymsci.2007.09.003
  • Jayaramudu T, Ko H-U, Zhai L, et al. Preparation and characterization of hydrogels from polyvinyl alcohol and cellulose and their electroactive behavior. Soft Mater. 2017;15:64–72.10.1080/1539445X.2016.1246458
  • Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187–3204.10.1016/j.polymer.2008.04.017
  • Kumar AP, Depan D, Singh Tomer N, et al. Nanoscale particles for polymer degradation and stabilization – trends and future perspectives. Prog Polym Sci. 2009;34:479–515.10.1016/j.progpolymsci.2009.01.002
  • Sekhon BS, Kamboj SR. Inorganic nanomedicine – part 2. Nanomed Nanotechnol Biol Med. 2010;6:612–618.10.1016/j.nano.2010.04.003
  • Hughes GA. Nanostructure-mediated drug delivery. Nanomed Nanotechnol Biol Med. 2005;1:22–30.
  • Coronado R, Pekerar S, Lorenzo AT, et al. Characterization of thermo-sensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid. Polym Bull. 2011;67:101–124.10.1007/s00289-010-0407-6
  • Promnimit S, Dutta J. Self-organization of colloidal nanoparticles into functional pressure sensing device. J Nanosci Nanotechnol. 2012;12:8143–8146.10.1166/jnn.2012.4526
  • Yeo SY, Lee HJ, Jeong SH. Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci. 2003;38:2143–2147.10.1023/A:1023767828656
  • Yeo SY, Jeong SH. Preparation and characterization of polypropylene/silver nanocomposite fibers. Polym Int. 2003;52:1053–1057.10.1002/(ISSN)1097-0126
  • Jayaramudu T, Raghavendra GM, Varaprasad K, et al. Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohydr Polym. 2013;92:2193–2200.10.1016/j.carbpol.2012.12.006
  • Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem. 2010;20:6789.10.1039/c0jm00817f
  • Ren G, Hu D, Cheng EWC, et al. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. 2009;33:587–590.10.1016/j.ijantimicag.2008.12.004
  • Guajardo-pacheco J, Morales-sánchez E, Araujo-martínez R, et al. Antimicrobial properties of copper nanoparticles and amino acid chelated copper nanoparticles produced by using a soya extract. Bioinorg Chem Appl. 2017;2017:15–17.
  • Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus. J Biomed Mater Res. 2000;52:662–668.10.1002/(ISSN)1097-4636
  • Kraft CN, Hansis M, Arens S, et al. Striated muscle microvascular response to silver implants: a comparative in vivo study with titanium and stainless steel. J Biomed Mater Res. 2000;49:192–199.10.1002/(ISSN)1097-4636
  • Gupta A, Silver S. Silver as a biocide: will resistance become a problem? Nat Biotechnol. 1998;16:888–888.10.1038/nbt1098-888
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–182.10.1016/j.jcis.2004.02.012
  • Maki DG, Tambyah PA. Engineering out the risk of infection with urinary catheters. Emerg Infect Dis. 2001;7:342–347.10.3201/eid0702.010240
  • Ip M, Lui SL, Poon VKM, et al. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55:59–63.10.1099/jmm.0.46124-0
  • Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng. 2005;90:59–63.10.1002/(ISSN)1097-0290
  • Bosetti M, Massè A, Tobin E, et al. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials. 2002;23:887–892.10.1016/S0142-9612(01)00198-3
  • Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci. 2001;90:1927–1936.10.1002/jps.1143
  • Chen X, Liu Z, Parker SG, et al. Light-induced hydrogel based on tumor-targeting mesoporous silica nanoparticles as a theranostic platform for sustained cancer treatment. ACS Appl Mater Interfaces. 2016;8:15857–15863.10.1021/acsami.6b02562
  • Elechiguerra J, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3:6.10.1186/1477-3155-3-6
  • Saravanan P, Padmanabha Raju M, Alam S. A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites. Mater Chem Phys. 2007;103:278–282.10.1016/j.matchemphys.2007.02.025
  • Murthy PSK, Murali Mohan Y, Varaprasad K, et al. First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci. 2008;318:217–224.10.1016/j.jcis.2007.10.014
  • Murali Mohan Y, Vimala K, Thomas V, et al. Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci. 2010;342:73–82.10.1016/j.jcis.2009.10.008
  • Jayaramudu T, Raghavendra GM, Varaprasad K, et al. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr Polym. 2013;95:188–194.10.1016/j.carbpol.2013.02.075
  • Jayaramudu T, Raghavendra GM, Varaprasad K, et al. 5-Fluorouracil encapsulated magnetic nanohydrogels for drug-delivery applications. J Appl Polym Sci. 2016;133:1–10.
  • Raghavendra GM, Jayaramudu T, Varaprasad K, et al. Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydr Polym. 2013;93:553–560.10.1016/j.carbpol.2012.12.035
  • Jayaramudu T, Raghavendra GM, Varaprasad K, et al. Preparation and characterization of poly(ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process. J Appl Polym Sci. 2016;133:43027.
  • Vimala K, Samba Sivudu K, Murali Mohan Y, et al. Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr Polym. 2009;75:463–471.10.1016/j.carbpol.2008.08.009
  • Varaprasad K, Mohan YM, Vimala K, et al. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J Appl Polym Sci. 2011;121:784–796.10.1002/app.33508
  • Kalyan Kamal SS, Vimala J, Sahoo PK, et al. A green chemical approach for synthesis of shape anisotropic gold nanoparticles. Int Nano Lett. 2014;4:109.10.1007/s40089-014-0109-4
  • Wang T, Lin J, Chen Z, et al. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod. 2014;83:413–419.10.1016/j.jclepro.2014.07.006
  • Sun Q, Cai X, Li J, et al. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surfaces A Physicochem Eng Asp. 2014;444:226–231.10.1016/j.colsurfa.2013.12.065
  • Jung YD, Kim MS, Shin BA, et al. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer. 2001;84:844–850.10.1054/bjoc.2000.1691
  • Parkar SG, Trower TM, Stevenson DE. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe. 2013;23:12–19.10.1016/j.anaerobe.2013.07.009
  • Levites Y, Weinreb O, Maor G, et al. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78:1073–1082.10.1046/j.1471-4159.2001.00490.x
  • Varaprasad K, Sadiku R. Development of microbial protective Kolliphor-based nanocomposite hydrogels. J Appl Polym Sci. 2015;132:n/a–n/a.10.1002/app.42781
  • Chiari M, Alesio LD, Consonni R, et al. New types of large-pore polyacrylamide-agarose mixed-bed matrices for DNA electrophoresis: pore size estimation from Ferguson plots of DNA fragments. Electrophoresis. 1995;16:1337–1344.
  • Varaprasad K, Ravindra S, Narayana Reddy N, et al. Design and development of temperature sensitive porous poly(NIPAAm-AMPS) hydrogels for drug release of doxorubicin-a cancer chemotherapy drug. J Appl Polym Sci. 2010;116:3593–3602.
  • Garcia JPD, Hsieh MF, Doma BT, et al. Synthesis of gelatin-??-Polyglutamic acid-based hydrogel for the in vitro controlled release of epigallocatechin gallate (EGCG) from Camellia sinensis. Polymers (Basel). 2014;6:39–58.
  • Liang J, Cao L, Zhang L, et al. Preparation, characterization, and in vitro antitumor activity of folate conjugated chitosan coated EGCG nanoparticles. Food Sci Biotechnol. 2014;23:569–575.10.1007/s10068-014-0078-4
  • File PD. Joint committee on powder diffraction standards. Philadelphia, PA: ASTM; 1967. p. 9–185.
  • Anuratha M, Jawahar A, Umadevi M, et al. Adsorption of N-(1-(2-bromophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide on silver nanoparticles: SERS investigation. Spectrochim Acta A Mol Biomol Spectrosc. 2015;138:234–240.10.1016/j.saa.2014.11.044
  • Tang Q, Wu J, Sun H, et al. Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydr Polym. 2008;74:215–219.10.1016/j.carbpol.2008.02.008
  • Shen J, Yan B, Li T, et al. Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos Part A Appl Sci Manuf. 2012;43:1476–1481.10.1016/j.compositesa.2012.04.006
  • Obradovic B, Stojkovska J, Jovanovic Z, et al. Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles. J Mater Sci Mater Med. 2012;23:99–107.10.1007/s10856-011-4522-1
  • Varaprasad K, Raghavendra GM, Jayaramudu T, et al. Nano zinc oxide-sodium alginate antibacterial cellulose fibres. Carbohydr Polym. 2016;135:349–355.
  • Raghavendra GM, Jayaramudu T, Varaprasad K, et al. Antibacterial nanocomposite hydrogels for superior biomedical applications: a Facile eco-friendly approach. RSC Adv. 2015;5:14351–14358.10.1039/C4RA15995K
  • Raghavendra GM, Jayaramudu T, Varaprasad K, et al. Microbial resistant nanocurcumin-gelatin-cellulose fibers for advanced medical applications. RSC Adv. 2014;4:3494–3501.10.1039/C3RA46429F
  • Ramos M, Jiménez A, Peltzer M, et al. Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J Food Eng. 2012;109:513–519.10.1016/j.jfoodeng.2011.10.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.