656
Views
24
CrossRef citations to date
0
Altmetric
Articles

PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 805-824 | Received 19 Jan 2017, Accepted 05 Jul 2017, Published online: 28 Jul 2017

References

  • Gómez-Barrena E, Rosset P, Lozano D, et al. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone. 2015;70:93–101.10.1016/j.bone.2014.07.033
  • Cui L, Zhang N, Cui W, et al. A novel nano/micro-fibrous scaffold by melt-spinning method for bone tissue engineering. J Bionic Eng. 2015;12:117–128.10.1016/S1672-6529(14)60106-2
  • Ng R, Zang R, Yang KK, et al. Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering. RSC Adv. 2012;2:10110–10124.10.1039/c2ra21085a
  • Li J, Liu D, Hu C, et al. Flexible fibers wet-spun from formic acid modified chitosan. Carbohyd Polym. 2016;136:1137–1143.10.1016/j.carbpol.2015.10.022
  • Durham ER, Tronci G, Yang X, et al. Nonwoven scaffolds for bone regeneration. In: Blair T, editor. Biomedical textiles for orthopaedic and surgical applications. Cambridge: Woodhead Publishing; 2015. p. 45–65.10.1016/B978-1-78242-017-0.00003-9
  • Ucar S, Ermis M, Hasirci N. Modified chitosan scaffolds: proliferative, cytotoxic, apoptotic, and necrotic effects on Saos-2 cells and antimicrobial effect on Escherichia coli. J Bioact Compat Polym. 2016;31(3):304–319.
  • Ucar S, Yilgor P, Hasirci V, et al. Chitosan-based wet-spun scaffolds for bioactive agent delivery. J Appl Polym Sci. 2013;130:3759–3769.10.1002/app.39629
  • Mondal D, Griffith M, Venkatraman SS. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. Int J Polym Mater Polym Biomater. 2016;65:255–265.10.1080/00914037.2015.1103241
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer - polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217–1256.10.1016/j.progpolymsci.2010.04.002
  • Díaz E, Sandonis I, Valle MB. In vitro degradation of poly(ε-caprolactone)/nHA composites. J Nanomater. 2014;2014:1–8.10.1155/2014/802435
  • Guo B, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem. 2014;57:490–500.10.1007/s11426-014-5086-y
  • Lu L, Zhang Q, Wootton D, et al. Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method. J Mater Sci Mater Med. 2012;23:2217–2226.10.1007/s10856-012-4695-2
  • Isikli C, Hasirci N. Surface and cell affinity properties of chitosan-gelatin-hydroxyapatite composite films. Key Eng Mater. 2012;493–494:337–342.
  • Hasturk O, Sivas A, Karasozen B, et al. Quantification of type, timing, and extent of cell body and nucleus deformations caused by the dimensions and hydrophilicity of square prism micropillars. Adv Healthcare Mater. 2016;5(23):2972–2982.10.1002/adhm.201600857
  • Ozcan C, Zorlutuna P, Hasirci V, et al. Influence of oxygen plasma modification on surface free energy of PMMA films and cell attachment. Macromol Symp. 2008;269:128–137.10.1002/masy.v269:1
  • Hasirci V, Tezcaner A, Hasirci N. Oxygen plasma modification of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) film surfaces for tissue engineering. J Appl Polym Sci. 2003;87:1285–1289.10.1002/app.11532
  • Aksoy EA, Hasirci V, Hasirci N, et al. Plasma protein adsorption and platelet adhesion on heparin-immobilized polyurethane films. J Bioact Compat Polym. 2008;23:505–519.10.1177/0883911508097422
  • Russo L, Russo T, Battocchio C, et al. Galactose grafting on poly(ε-caprolactone) substrates for tissue engineering: a preliminary study. Carbohyd Res. 2015;405:39–46.10.1016/j.carres.2014.07.027
  • Bhattacharjee P, Naskar D, Kim H-W, et al. Non-mulberry silk fibroin grafted PCL nanofibrous scaffold: promising ECM for bone tissue engineering. Eur Polym J. 2015;71:490–509.10.1016/j.eurpolymj.2015.08.025
  • Diaz V, Newman J. Surgical site infection and prevention guidelines: a primer for certified registered nurse anesthetists. Am Assoc Nurse Anesth. 2015;83:63–68.
  • Sezer UA, Arslantunali D, Aksoy EA, et al. Poly(ε-caprolactone) composite scaffolds loaded with gentamicin-containing β-tricalcium phosphate/gelatin microspheres for bone tissue engineering applications. J Appl Polym Sci. 2014;131:1–11.
  • Puppi D, Piras AM, Chiellini F, et al. Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. J Tissue Eng Regener Med. 2011;5:253–263.10.1002/term.v5.4
  • Puppi D, Mota C, Gazzarri M, et al. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomed Microdevice. 2012;14:1115–1127.10.1007/s10544-012-9677-0
  • Martins AM, Pham QP, Malafaya PB, et al. The role of lipase and alpha-amylase in the degradation of starch/poly(epsilon-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells. Tissue Eng Part A. 2009;15:295–305.10.1089/ten.tea.2008.0025
  • Yildirim MS, Hasanreisoglu U, Hasirci N, et al. Adherence of Candida albicam to glow-discharge modified acrylic denture base polymers. J Oral Rehabil. 2005;32:518–525.10.1111/jor.2005.32.issue-7
  • Endogan T, Kiziltay A, Hasirci V, et al. Modification of acrylic bone cements with oxygen plasma and additives. J Biomater Tissue Eng. 2012;2:236–243.10.1166/jbt.2012.1051
  • Gupta B, Krishnanand K, Deopura BL. Oxygen plasma-induced graft polymerization of acrylic acid on polycaprolactone monofilament. Eur Polym J. 2012;48:1940–1948.10.1016/j.eurpolymj.2012.07.015
  • Krishnanand K, Lal Deopura B, Mishra A, et al. Immobilization of gelatin onto acrylic acid grafted polycaprolactone monofilament. J Biomater Tissue Eng. 2013;3:233–239.10.1166/jbt.2013.1080
  • Sezer UA, Aksoy EA, Hasirci V, et al. Poly(ε-caprolactone) composites containing gentamicin-loaded β-tricalcium phosphate/gelatin microspheres as bone tissue supports. J Appl Polym Sci. 2013;127:2132–2139.10.1002/app.37770
  • Ulubayram K, Kiziltay A, Yilmaz E, et al. Desferrioxamine release from gelatin-based systems. Biotechnol Appl Biochem. 2005;42:237–245.
  • Ding M, Zhou L, Fu X, et al. Biodegradable gemini multiblock poly(ε-caprolactone urethane)s toward controllable micellization. Soft Matter. 2010;6(9):2087–2092.10.1039/b926689e
  • El-Say KM. Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using Draper – Lin small composite design. Drug Des Dev Ther. 2016;10:825–839.10.2147/DDDT
  • Puppi D, Dinucci D, Bartoli C, et al. Development of 3D wet-spun polymeric scaffolds loaded with antimicrobial agents for bone engineering. J Bioact Compat Polym. 2011;26:478–492.10.1177/0883911511415918
  • Tuzlakoglu K, Pashkuleva I, Rodrigues MT, et al. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation. J Biomed Mater Res Part A. 2010;92A:369–377.10.1002/jbm.a.v92a:1
  • Mondrinos MJ, Dembzynski R, Lu L, et al. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials. 2006;27:4399–4408.10.1016/j.biomaterials.2006.03.049
  • Murphy CM, O’Brien FJ, Little DG, et al. Cell scaffold interactions in the bone tissue engineering triad. Eur Cell Mater. 2013;26:120–132.
  • Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14:15–56.10.1166/jnn.2014.9127
  • Tietz NW, Shuey DF. Lipase in serum – the elusive enzyme: an overview. Clin Chem. 1993;39:746–756.
  • Frydrych M, Román S, MacNeil S, et al. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomater. 2015;18:40–49.10.1016/j.actbio.2015.03.004
  • Seyednejad H, Gawlitta D, Kuiper RV, et al. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Biomaterials. 2012;33:4309–4318.10.1016/j.biomaterials.2012.03.002
  • Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271.10.1016/j.biomaterials.2015.08.045
  • Kim YH, Jyoti MA, Song HY. Immobilization of cross linked Col-I-OPN bone matrix protein on aminolysed PCL surfaces enhances initial biocompatibility of human adipogenic mesenchymal stem cells (hADMSC). Appl Surf Sci. 2014;303:97–106.10.1016/j.apsusc.2014.02.084
  • Louette P, Bodino F, Pireaux J. Polycaprolactone (PCL) XPS reference core level and energy loss spectra. Surf Sci. 2006;12:27–31.
  • de Luca AC, Stevens JS, Schroeder SLM, et al. Immobilization of cell-binding peptides on poly-e-caprolactone film surface to biomimic the peripheral nervous system. J Biomed Mater Res - Part A. 2013;101A:491–501.10.1002/jbm.a.v101a.2
  • Baker BM, Chen CS. Deconstructing the third dimension - how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125:3015–3024.10.1242/jcs.079509
  • Yu B, Wang X, Qian X, et al. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 2014;4(60):31782–31794.10.1039/C3RA45945D
  • Gendler E, Gendler S, Nimni ME. Toxic reactions evoked by glutaraldehyde-fixed pericardium and cardiac valve tissue bioprosthesis. J Biomed Mater Res. 1984;18:727–736.10.1002/(ISSN)1097-4636
  • Ghanaati S, Barbeck M, Orth C, et al. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater. 2010;6:4476–4487.10.1016/j.actbio.2010.07.006
  • Tang D, Tare RS, Yang L-Y, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363–382.10.1016/j.biomaterials.2016.01.024
  • Benex Limited. BBL sensi-disc antimicrobial susceptibility test discs; 2011. p. 1–4.
  • Phromsopha T, Baimark Y. Preparation of starch/gelatin blend microparticles by a water-in-oil emulsion method for controlled release drug delivery. Int J Biomater. 2014;2014:1–6.10.1155/2014/829490
  • García Cruz DM, Sardinha V, Escobar Ivirico JL, et al. Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering. J Mater Sci Mater Med. 2013;24:503–513.10.1007/s10856-012-4818-9
  • Sezer UA, Billur D, Huri G, et al. In vivo performance of poly(ε-caprolactone) constructs loaded with gentamicin releasing composite microspheres for use in bone regeneration. J Biomater Tissue Eng. 2014;4:786–795.10.1166/jbt.2014.1238
  • Harley BAC, Kim H-D, Zaman MH, et al. Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys J. 2008;95:4013–4024.10.1529/biophysj.107.122598

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.