203
Views
8
CrossRef citations to date
0
Altmetric
Articles

The role of rhFGF-2 soaked polymer membrane for enhancement of guided bone regeneration

, , , , , & show all
Pages 825-843 | Received 18 Apr 2017, Accepted 07 Jul 2017, Published online: 02 Aug 2017

References

  • Dahlin C, Sennerby L, Lekholm U, et al. Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants. 1989;4:19–25.
  • Dahlin C, Lekholm U, Becker W, et al. Treatment of fenestration and dehiscence bone defects around oral implants using the guided tissue regeneration technique: a prospective multicenter study. Int J Oral Maxillofac Implants. 1995;10:312–318.
  • Dahlin C, Lekholm U, Linde A. Membrane-induced bone augmentation at titanium implants. A report on ten fixtures followed from 1 to 3 years after loading. Int J Periodontics Restorative Dent. 1991;11:273–281.
  • Santana RB, Trackman PC. Controlled release of fibroblast growth factor 2 stimulates bone healing in an animal model of diabetes mellitus. Int J Oral Maxillofac Implants. 2006;21:711–718.
  • Buser D, Dula K, Belser UC, et al. Localized ridge augmentation using guided bone regeneration. II. Surgical procedure in the mandible. Int J Periodontics Restorative Dent. 1995;15:10–29.
  • Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol. 1995;172:126–138.10.1006/dbio.1995.0010
  • Kim MS, Bhang SH, Yang HS, et al. Development of functional fibrous matrices for the controlled release of basic fibroblast growth factor to improve therapeutic angiogenesis. Tissue Eng Part A. 2010;16:2999–3010.10.1089/ten.tea.2009.0828
  • Nomi M, Miyake H, Sugita Y, et al. Role of growth factors and endothelial cells in therapeutic angiogenesis and tissue engineering. Curr Stem Cell Res Ther. 2006;1:333–343.10.2174/157488806778226777
  • Oh S, Lee H, Lee JH, et al. Collagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiation. Tissue Eng Part A. 2012;18:1087–1100.10.1089/ten.tea.2011.0360
  • Santos TC, Morton TJ, Moritz M, et al. Vascular endothelial growth factor and fibroblast growth factor-2 incorporation in starch-based bone tissue-engineered constructs promote the in vivo expression of neovascularization mediators. Tissue Eng Part A. 2013;19:834–848.10.1089/ten.tea.2010.0741
  • Montero A, Okada Y, Tomita M, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest. 2000;105:1085–1093.10.1172/JCI8641
  • Anzai J, Kitamura M, Nozaki T, et al. Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate (β-TCP) on the beagle dog 1-wall periodontal defect model. Biochem Biophys Res Commun. 2010;403:345–350.10.1016/j.bbrc.2010.11.032
  • Murakami S, Takayama S, Kitamura M, et al. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J Periodontal Res. 2003;38:97–103.10.1034/j.1600-0765.2003.00640.x
  • Oortgiesen DA, Walboomers XF, Bronckers AL, et al. Periodontal regeneration using an injectable bone cement combined with BMP-2 or FGF-2. J Tissue Eng Regen Med. 2014;8:202–209.10.1002/term.v8.3
  • Takayama S, Murakami S, Shimabukuro Y, et al. Periodontal regeneration by FGF-2 (bFGF) in primate models. J Dent Res. 2001;80:2075–2079.10.1177/00220345010800121001
  • Gospodarowicz D. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature. 1974;249:123–127.10.1038/249123a0
  • Nath SG, Raveendran R. An insight into the possibilities of fibroblast growth factor in periodontal regeneration. J Indian Soc Periodontol. 2014;18:289–292.10.4103/0972-124X.134560
  • Quarto N, Longaker MT. FGF-2 inhibits osteogenesis in mouse adipose tissue-derived stromal cells and sustains their proliferative and osteogenic potential state. Tissue Eng. 2006;12:1405–1418.10.1089/ten.2006.12.1405
  • Shimabukuro Y, Ichikawa T, Takayama S, et al. Fibroblast growth factor-2 regulates the synthesis of hyaluronan by human periodontal ligament cells. J Cell Physiol. 2005;203:557–563.10.1002/(ISSN)1097-4652
  • Terashima Y, Shimabukuro Y, Terashima H, et al. Fibroblast growth factor-2 regulates expression of osteopontin in periodontal ligament cells. J Cell Physiol. 2008;216:640–650.10.1002/jcp.v216:3
  • Hurley MM, Abreu C, Harrison JR, et al. Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. J Biol Chem. 1993;268:5588–5593.
  • Kitamura M, Akamatsu M, Machigashira M, et al. FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J Dent Res. 2011;90:35–40.10.1177/0022034510384616
  • Kitamura M, Nakashima K, Kowashi Y, et al. Periodontal tissue regeneration using fibroblast growth factor-2: randomized controlled phase ii clinical trial. PLoS One. 2008;3:e2611.10.1371/journal.pone.0002611
  • Hosokawa R, Kikuzaki K, Kimoto T, et al. Controlled local application of basic fibroblast growth factor (FGF-2) accelerates the healing of GBR. An experimental study in beagle dogs. Clin Oral Implant Res. 2000;11:345–353.10.1034/j.1600-0501.2000.011004345.x
  • Nakahara T, Nakamura T, Kobayashi E, et al. Novel approach to regeneration of periodontal tissues based on in situ tissue engineering: effects of controlled release of basic fibroblast growth factor from a sandwich membrane. Tissue Eng. 2003;9:153–162.10.1089/107632703762687636
  • Kawaguchi H, Jingushi S, Izumi T, et al. Local application of recombinant human fibroblast growth factor-2 on bone repair: a dose-escalation prospective trial on patients with osteotomy. J Orthop Res. 2007;25:480–487.10.1002/(ISSN)1554-527X
  • Helfrich MH, Ralston S. Bone research protocols. Totowa (NJ): Humana Press; 2003.10.1385/1592593666
  • Bos GD, Goldberg VM, Powell AE, et al. The effect of histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg. 1983;65:89–96.10.2106/00004623-198365010-00012
  • Frame JW. A convenient animal model for testing bone substitute materials. J Oral Surg. 1980;38:176–180.
  • Dodde R, Yavuzer R, Bier UC, et al. Spontaneous bone healing in the rabbit. J Craniofac Surg. 2000;11:346–349.10.1097/00001665-200011040-00013
  • Kramer I, Killey H, Wright H. A histological and radiological comparison of the healing of defects in the rabbit calvarium with and without implanted heterogeneous anorganic bone. Arch Oral Biol. 1968;13:1095IN151105IN17–1104IN161106.10.1016/0003-9969(68)90063-0
  • Sohn J, Park J, Um Y, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci. 2010;40:180–187.10.5051/jpis.2010.40.4.180
  • Misch CE. Contemporary implant dentistry. St. Louis (MO): Mosby; 1999.
  • Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;205:299–308.
  • Greenwald JA, Mehrara BJ, Spector JA, et al. Biomolecular mechanisms of calvarial bone induction: immature versus mature dura mater. Plast Reconstr Surg. 2000;105:1382–1392.
  • Huh J, Choi B, Kim B, et al. Critical size defect in the canine mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:296–301.10.1016/j.tripleo.2004.12.015
  • Hayden JM, Mohan S, Baylink DJ. The insulin-like growth factor system and the coupling of formation to resorption. Bone. 1995;17:S93–S98.10.1016/8756-3282(95)00186-H
  • Mohan S, Baylink DJ. Insulin-like growth factor system components and the coupling of bone formation to resorption. Horm Res. 1996;45(Suppl 1):59–62.10.1159/000184833
  • Basle MF, Chappard D, Grizon F, et al. Osteoclastic resorption of Ca-P biomaterials implanted in rabbit bone. Calcif Tissue Int. 1993;53:348–356.10.1007/BF01351842
  • Daculsi G, LeGeros RZ, Heughebaert M, et al. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int. 1990;46:20–27.10.1007/BF02555820
  • Yamada S, Heymann D, Bouler JM, et al. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials. 1997;18:1037–1041.10.1016/S0142-9612(97)00036-7
  • Daculsi G, Passuti N, Martin S, et al. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res. 1990;24:379–396.10.1002/(ISSN)1097-4636
  • Friedmann A, Dard M, Kleber BM, et al. Ridge augmentation and maxillary sinus grafting with a biphasic calcium phosphate: histologic and histomorphometric observations. Clin Oral Implant Res. 2009;20:708–714.10.1111/clr.2009.20.issue-7
  • Lim HC, Zhang ML, Lee JS, et al. Effect of different hydroxyapatite:β-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model. Int J Oral Maxillofac Implants. 2015;30:65–72.10.11607/jomi.3709
  • Mangano C, Sinjari B, Shibli JA, et al. A human clinical, histological, histomorphometrical, and radiographical study on biphasic HA-beta-TCP 30/70 in maxillary sinus augmentation. Clin Implant Dent Relat Res. 2015;17:610–618.10.1111/cid.2015.17.issue-3
  • Wada S, Fukawa T, Kamiya S. [Osteocalcin and bone]. Clin Calcium. 2007;17:1673–1677.
  • Movat HZ. Demonstration of all connective tissue elements in a single section; pentachrome stains. AMA Arch Pathol. 1955;60:289–295.
  • Russell HK. A modification of Movat’s pentachrome stain. Arch pathol. 1972;94:187–191.
  • Rentsch C, Schneiders W, Manthey S, et al. Comprehensive histological evaluation of bone implants. Biomatter. 2014;4:e27993.10.4161/biom.27993
  • Bandhyopadhya A, Bose S. Characterization of biomaterials. Amsterdam: Elsevier; 2013.
  • Nagayasu Tanaka T, Anzai J, Takaki S, et al. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs. PLoS One. 2015;10:e0131870–e0131870.10.1371/journal.pone.0131870
  • Oi Y, Ota M, Yamamoto S, et al. Beta-tricalcium phosphate and basic fibroblast growth factor combination enhances periodontal regeneration in intrabony defects in dogs. Dent Mater J. 2009;28:162–169.10.4012/dmj.28.162
  • Murakami S, Takayama S, Ikezawa K, et al. Regeneration of periodontal tissues by basic fibroblast growth factor. J Periodontal Res. 1999;34:425–430.10.1111/jre.1999.34.issue-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.