311
Views
9
CrossRef citations to date
0
Altmetric
Articles

Preparation of cell aggregates incorporating gelatin hydrogel microspheres containing bone morphogenic protein-2 with different degradabilities

&
Pages 775-792 | Received 09 Mar 2017, Accepted 12 Jul 2017, Published online: 31 Jul 2017

References

  • Okochi M, Takano S, Isaji Y, et al. Three dimensional cell culture array using magnetic force-based cell patterning for analysis of invasive capacity of BALB/3T3/v-src. Lab Chip. 2009;9(23):3378–3384.10.1039/b909304d
  • Mohan N, Nair PD, Tabata Y. A 3D biodegradable protein based matrix for cartilage tissue engineering and stem cell differentiation to cartilage. J Mater Sci Mater Med. 2009;20(Suppl. 1):S49–S60.10.1007/s10856-008-3481-7
  • Benton G, George J, Kleinman HK, et al. Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol. 2009;221(1):18–25.10.1002/jcp.v221:1
  • Hanjaya-Putra D, Gerecht S. Vascular engineering using human embryonic stem cells. Biotechnol Prog. 2009;25(1):2–9.10.1002/btpr.v25:1
  • Nelson LJ, Walker SW, Hayes PC, et al. Low-shear modelled microgravity environment maintains morphology and differentiated functionality of primary porcine hepatocyte cultures. Cells Tissues Organs. 2010;192(2):125–140.10.1159/000308893
  • Fukuda J, Sakai Y, Nakazawa K. Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials. 2006;27(7):1061–1070.10.1016/j.biomaterials.2005.07.031
  • Rodriguez-Enriquez S, Gallardo-Perez JC, Aviles-Salas A, et al. Energy metabolism transition in multi-cellular human tumor spheroids. J Cell Physiol. 2008;216(1):189–97.10.1002/(ISSN)1097-4652
  • Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008;3(9–10):1172–1184.10.1002/biot.v3:9/10
  • Kellner K, Liebsch G, Klimant I, et al. Determination of oxygen gradients in engineered tissue using a fluorescent sensor. Biotechnol Bioeng. 2002;80(1):73–83.10.1002/bit.10352
  • Compan V, Guzman J, Riande E. A potentiostatic study of oxygen transmissibility and permeability through hydrogel membranes. Biomaterials. 1998;19(23):2139–2145.10.1016/S0142-9612(98)00113-6
  • Tajima S, Tabata Y. Preparation and functional evaluation of cell aggregates incorporating gelatin microspheres with different degradabilities. J Tissue Eng Regen Med. 2013;10:801–811.
  • Chung HJ, Jung JS, Park TG. Fabrication of adipose-derived mesenchymal stem cell aggregates using biodegradable porous microspheres for injectable adipose tissue regeneration. J Biomater Sci Polym Ed. 2011;22(1–3):107–122.10.1163/092050609X12580983495681
  • Hayashi K, Tabata Y. Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions. Acta Biomater. 2011;7(7):2797–2803.10.1016/j.actbio.2011.04.013
  • Baraniak PR, Cooke MT, Saeed R, et al. Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. J Mech Behav Biomed Mater. 2012;11:63–71.10.1016/j.jmbbm.2012.02.018
  • Fu AS, Solorio LD, Alsberg E, et al. Mathematical modelling of glycosaminoglycan production by stem cell aggregates incorporated with growth factor-releasing polymer microspheres. J Tissue Eng Regen Med. 2014;11:481–488. DOI:10.1002/term.1940.
  • Leong W, Kremer A, Wang DA. Development of size-customized hepatocarcinoma spheroids as a potential drug testing platform using a sacrificial gelatin microsphere system. Mater Sci Eng C Mater Biol Appl. 2016;63:644–649.10.1016/j.msec.2016.03.046
  • Zekorn D. Intravascular retention, dispersal, excretion and break-down of gelatin plasma substitutes. Bibl Haematol. 1969;33:131–140.
  • Narita A, Takahara M, Ogino T, et al. Effect of gelatin hydrogel incorporating fibroblast growth factor 2 on human meniscal cells in an organ culture model. Knee. 2009;16(4):285–289.10.1016/j.knee.2008.12.011
  • Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Biomaterials. 2005;26(17):3587–3596.10.1016/j.biomaterials.2004.09.046
  • Hori Y, Inoue S, Hirano Y, et al. Effect of culture substrates and fibroblast growth factor addition on the proliferation and differentiation of rat bone marrow stromal cells. Tissue Eng. 2004;10(7–8):995–1005.10.1089/ten.2004.10.995
  • Watanabe M, Jo J, Radu A, et al. A tissue engineering approach for prenatal closure of myelomeningocele with gelatin sponges incorporating basic fibroblast growth factor. Tissue Eng Part A. 2010;16(5):1645–1655.10.1089/ten.tea.2009.0532
  • Akagawa Y, Kubo T, Koretake K, et al. Initial bone regeneration around fenestrated implants in Beagle dogs using basic fibroblast growth factor–gelatin hydrogel complex with varying biodegradation rates. J Prosthodont Restor. 2008;53(1):41–47.
  • Hiraoka Y, Yamashiro H, Yasuda K, et al. In situ regeneration of adipose tissue in rat fat pad by combining a collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. Tissue Eng. 2006;12(6):1475–1487.10.1089/ten.2006.12.1475
  • Igai H, Chang SS, Gotoh M, et al. Regeneration of canine tracheal cartilage by slow release of basic fibroblast growth factor from gelatin sponge. ASAIO J. 2006;52(1):86–91.10.1097/01.mat.0000196513.97411.3d
  • Okamoto T, Yamamoto Y, Gotoh M, et al. Slow release of bone morphogenetic protein 2 from a gelatin sponge to promote regeneration of tracheal cartilage in a canine model. J Thorac Cardiovasc Surg. 2004;127(2):329–334.10.1016/j.jtcvs.2003.08.017
  • Kimura Y, Tabata Y. Controlled release of stromal-cell-derived factor-1 from gelatin hydrogels enhances angiogenesis. J Biomater Sci Polym Ed. 2010;21(1):37–51.10.1163/156856209X410193
  • Esaki J, Marui A, Tabata Y, et al. Controlled release systems of angiogenic growth factors for cardiovascular diseases. Expert Opin Drug Deliv. 2007;4(6):635–649.10.1517/17425247.4.6.635
  • Tabata Y, Nagano A, Ikada Y. Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng. 1999;5(2):127–138.10.1089/ten.1999.5.127
  • Ozeki M, Tabata Y. In vivo degradability of hydrogels prepared from different gelatins by various cross-linking methods. J Biomater Sci Polym Ed. 2005;16(5):549–561.10.1163/1568562053783731
  • Nitta N, Ohta S, Tanaka T, et al. An initial clinical study on the efficacy of cisplatin-releasing gelatin microspheres for metastatic liver tumors. Eur J Radiol. 2009;71(3):519–526.10.1016/j.ejrad.2008.06.006
  • Patel ZS, Yamamoto M, Ueda H, et al. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater. 2008;4(5):1126–1138.10.1016/j.actbio.2008.04.002
  • Kikuchi T, Kubota S, Asaumi K, et al. Promotion of bone regeneration by CCN2 incorporated into gelatin hydrogel. Tissue Eng Part A. 2008;14(6):1089–1098.10.1089/ten.tea.2007.0167
  • Kushibiki T, Tomoshige R, Iwanaga K, et al. Controlled release of plasmid DNA from hydrogels prepared from gelatin cationized by different amine compounds. J Control Release. 2006;112(2):249–256.10.1016/j.jconrel.2006.02.003
  • Ichinohe N, Kuboki Y, Tabata Y. Bone regeneration using titanium nonwoven fabrics combined with fgf-2 release from gelatin hydrogel microspheres in rabbit skull defects. Tissue Eng Part A. 2008;14(10):1663–1671.10.1089/ten.tea.2006.0350
  • Patel ZS, Ueda H, Yamamoto M, et al. In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds. Pharm Res. 2008;25(10):2370–2378.10.1007/s11095-008-9685-1
  • Tabata Y, Hijikata S, Muniruzzaman M, et al. Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed. 1999;10(1):79–94.10.1163/156856299X00298
  • Xiao G, Gopalakrishnan R, Jiang D, et al. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res. 2002;17(1):101–110.10.1359/jbmr.2002.17.1.101
  • Choi KY, Kim HJ, Lee MH, et al. Runx2 regulates FGF2-induced Bmp2 expression during cranial bone development. Dev Dyn. 2005;233(1):115–121.10.1002/(ISSN)1097-0177
  • Yang B, Lin X, Yang C, et al. Sambucus Williamsii Hance promotes MC3T3-E1 cells proliferation and differentiation via BMP-2/Smad/p38/JNK/Runx2 signaling pathway. Phytother Res. 2015;29(11):1692–1699.10.1002/ptr.v29.11
  • Yamamoto M, Takahashi Y, Tabata Y. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials. 2003;24(24):4375–4383.10.1016/S0142-9612(03)00337-5
  • Takahashi Y, Yamamoto M, Yamada K, et al. Skull bone regeneration in nonhuman primates by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. Tissue Eng. 2007;13(2):293–300.10.1089/ten.2006.0088
  • Kimura Y, Miyazaki N, Hayashi N, et al. Controlled release of bone morphogenetic protein-2 enhances recruitment of osteogenic progenitor cells for de novo generation of bone tissue. Tissue Eng Part A. 2010;16(4):1263–1270.10.1089/ten.tea.2009.0322
  • Tabata Y, Ikada Y, Morimoto K, et al. Surfactant-free preparation of biodegradable hydrogel microspheres for protein release. J Bioact Compat Polym. 1999;14(5):371–384.10.1177/088391159901400501
  • Bratt-Leal AM, Carpenedo RL, Ungrin MD, et al. Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials. 2011;32(1):48–56.10.1016/j.biomaterials.2010.08.113
  • Nam JH, Ermonval M, Sharfstein ST. Cell attachment to microcarriers affects growth, metabolic activity, and culture productivity in bioreactor culture. Biotechnol Prog. 2007;23(3):652–660.
  • Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883(2):173–177.10.1016/0304-4165(86)90306-5
  • Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed. 2001;12:77–88.10.1163/156856201744461
  • Ishaug-Riley SL, Crane GM, Gurlek A, et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res. 2015;36(1):1–8.
  • Agrawal V1, Sinha M. A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res B Appl Biomater. 2016;10:1–22.
  • Dang PN, Dwivedi N, Phillips LM, et al. Controlled dual growth factor delivery from microparticles incorporated within human bone marrow-derived mesenchymal stem cell aggregates for enhanced bone tissue engineering via endochondral ossification. Stem Cells Transl Med. 2016;5(2):206–217.10.5966/sctm.2015-0115
  • Castrén E, Sillat T, Oja S, et al. Osteogenic differentiation of mesenchymal stromal cells in two-dimensional and three-dimensional cultures without animal serum. Stem Cell Res Ther. 2015;6:167.10.1186/s13287-015-0162-6
  • Wu CJ, Lu HK. Smad signal pathway in BMP-2-induced osteogenesis – a mini review. J Dent Sci. 2008;3:13–21.
  • Maeda H, Sano A, Fujioka K. Controlled release of rhBMP-2 from collagen minipellet and the relationship between release profile and ectopic bone formation. Int J Pharm. 2004;275(1–2):109–122. 10.1016/j.ijpharm.2004.01.040
  • Wang CK, Ho M-L, Wang GJ, et al. Controlled-release of rhBMP-2 carriers in the regeneration of osteonecrotic bone. Biomaterials. 2009;30(25):4178–4186.10.1016/j.biomaterials.2009.04.029
  • Fan J, Park H, Tan S, et al. Enhanced osteogenesis of adipose derived stem cells with Noggin suppression and delivery of BMP-2. PLoS One. 2013;8(8):e7247410.1371/journal.pone.0072474
  • Poldervaart MT, Wang H, van der Stok J, et al. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS One. 2013;8:e72610.10.1371/journal.pone.0072610
  • Ogawa T, Akazawa T, Tabata Y. In vitro proliferation and chondrogenic differentiation of rat bone marrow stem cells cultured with gelatin hydrogel microspheres for TGF-beta1 release. J Biomater Sci Polym Ed. 2010;21(5):609–621.
  • Hirao M, Hashimoto J, Yamasaki N, et al. Oxygen tension is an important mediator of the transformation of osteoblasts to osteocytes. J Bone Miner Metab. 2007;25:266–276.10.1007/s00774-007-0765-9
  • Kanichai M, Ferguson D, Prendergast PJ, et al. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxiainducible factor (HIF)-1alpha. J Cell Physiol. 2008;216:708–715.10.1002/jcp.v216:3
  • Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol. 2001;187:345–355.10.1002/(ISSN)1097-4652
  • Salim A, Nacamuli RP, Morgan EF, et al. Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. J Biol Chem. 2004;279:40007–40016.10.1074/jbc.M403715200
  • Wang W, Itaka K, Ohba S, et al. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials. 2009;30(14):2705–2715.10.1016/j.biomaterials.2009.01.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.