673
Views
20
CrossRef citations to date
0
Altmetric
Articles

Preparation and characterization of protein-resistant hydrogels for soft contact lens applications via radical copolymerization involving a zwitterionic sulfobetaine comonomer

, , , &
Pages 1935-1949 | Received 21 Apr 2017, Accepted 01 Aug 2017, Published online: 11 Aug 2017

References

  • Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polymer J. 2015;65:252–267.10.1016/j.eurpolymj.2014.11.024
  • Goda T, Matsuno R, Konno T, et al. Protein adsorption resistance and oxygen permeability of chemically crosslinked phospholipid polymer hydrogel for ophthalmologic biomaterials. J Biomed Mater Res B. 2009;89B:184–190.10.1002/jbm.b.v89b:1
  • Nicolson PC, Vogt J. Soft contact lens polymers: an evolution. Biomaterials. 2001;22:3273–3283.10.1016/S0142-9612(01)00165-X
  • Stapleton F, Stretton S, Papas E, et al. Silicone hydrogel contact lenses and the ocular surface. Ocul Surface. 2006;4:24–43.10.1016/S1542-0124(12)70262-8
  • Thissen H, Gengenbach T, du Toit R, et al. Clinical observations of biofouling on PEO coated silicone hydrogel contact lenses. Biomaterials. 2010;31:5510–5519.10.1016/j.biomaterials.2010.03.040
  • Rediske AM, Koenig AL, Barekzi N, et al. Polyclonal human antibodies reduce bacterial attachment to soft contact lens and corneal cell surfaces. Biomaterials. 2002;23:4565–4572.10.1016/S0142-9612(02)00202-8
  • Taylor RL, Willcox MDP, Williams TJ, et al. Modulation of bacterial adhesion to hydrogel contact lenses by albumin. Optom Vis Sci. 1998;75:23–29.10.1097/00006324-199801000-00021
  • Willcox MDP, Holden BA. Contact lens related corneal infections. Biosci Rep. 2001;21:445–461.10.1023/A:1017991709846
  • Singh A, Li P, Beachley V, et al. A hyaluronic acid-binding contact lens with enhanced water retention. Cont Lens Anterior Eye. 2015;38:79–84.10.1016/j.clae.2014.09.002
  • Xu C, He R, Xie B, et al. Silicone hydrogels grafted with natural amino acids for ophthalmological application. J Biomater Sci Polym Ed. 2016;27:1354–1368.10.1080/09205063.2016.1201916
  • Perez-Roldan MJ, Debarnot D, Poncin-Epaillard F. Surface chemistry of PET for enhancing its antifouling properties. RSC Adv. 2014;4:64006–64013.10.1039/C4RA09328C
  • Sun F, Li X, Cao P, et al. Enhancing hydrophilicity and protein resistance of silicone hydrogels by plasma induced grafing with hydrophilic polymers. Chin J Polym Sci. 2010;28:547–554.10.1007/s10118-010-9082-1
  • Xu L, Ma P, Yuan B, et al. Anti-biofouling contact lenses bearing surface-immobilized layers of zwitterionic polymer by one-step modification. RSC Adv. 2014;4:15030–15035.10.1039/c3ra47119e
  • Yin S, Wang Y, Ren L, et al. Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma. Appl Surf Sci. 2008;255:483–485.10.1016/j.apsusc.2008.06.059
  • Yin P, Huang GB, Tse WH, et al. Nanocomposited silicone hydrogels with a laser-assisted surface modification for inhibiting the growth of bacterial biofilm. J Mater Chem B. 2015;3:3234–3241.10.1039/C4TB01871K
  • Wang B, Lin Q, Jin T, et al. Surface modification of intraocular lenses with hyaluronic acid and lysozyme for the prevention of endophthalmitis and posterior capsule opacification. RSC Adv. 2015;5:3597–3604.10.1039/C4RA13499K
  • Deng X, Korogiannaki M, Rastegari B, et al. “Click” chemistry-tethered hyaluronic acid-based contact lens coatings improve lens wettability and lower protein adsorption. ACS Appl Mater Interfaces. 2016;8:22064–22073.10.1021/acsami.6b07433
  • Rabinow BE, Ding YS, Qin C, et al. Biomaterials with permanent hydrophilic surfaces and low protein adsorption properties. J Biomater Sci Polym Ed. 1995;6:91–109.10.1163/156856295X00788
  • Lin C, Yeh Y, Lin W, et al. Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids Surf B. 2014;123:986–994.10.1016/j.colsurfb.2014.10.053
  • Xu LQ, Yao F, Fu GD, et al. Interpenetrating network hydrogels via simultaneous “click chemistry” and atom transfer radical polymerization. Biomacromol. 2010;11:1810–1817.10.1021/bm100268t
  • Escudero-Castellanos A, Ocampo-Garcia BE, Dominguez-Garcia MV, et al. Hydrogels based on poly(ethylene glycol) as scaffolds for tissue engineering application: biocompatibility assessment and effect of the sterilization process. J Mater Sci Mater Med. 2016;27:e24717.10.1007/s10856-016-5793-3
  • Estephan ZG, Schlenoff PS, Schlenoff JB. Zwitteration as an alternative to PEGylation. Langmuir. 2011;27:6794–6800.10.1021/la200227b
  • Chen S, Zheng J, Li L, et al. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J Am Chem Soc. 2005;127:14473–14478.10.1021/ja054169u
  • Ye L, Zhang Y, Wang Q, et al. Physical cross-linking starch-based zwitterionic hydrogel exhibiting excellent biocompatibility, protein resistance, and biodegradability. ACS Appl Mater Interfaces. 2016;8:15710–15723.10.1021/acsami.6b03098
  • Goda T, Ishihara K, Miyahara Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J Appl Polym Sci. 2015;132:41766.
  • Sundaram HS, Han X, Nowinski AK, et al. One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces. ACS Appl Mater Interfaces. 2014;6:6664–6671.10.1021/am500362 k
  • Wang L, Li G, Lin Y, et al. A strategy for constructing anti-adhesion surfaces based on interfacial thiol-ene photoclick chemistry between DOPA derivatives with a catechol anchor group and zwitterionic betaine macromolecules. Polym Chem. 2016;7:4964–4974.10.1039/C6PY01043A
  • Cao B, Tang Q, Cheng G. Recent advances of zwitterionic carboxybetaine materials and their derivatives. J Biomater Sci Polym Ed. 2014;25:1502–1513.10.1080/09205063.2014.927300
  • Leng C, Hung HC, Sun S, et al. Probing the surface hydration of nonfouling zwitterionic and PEG materials in contact with proteins. ACS Appl Mater Interfaces. 2015;7:16881–16888.10.1021/acsami.5b05627
  • Wu J, Xiao Z, He C, et al. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA). Acta Biomater. 2016;40:172–181.10.1016/j.actbio.2016.04.045
  • Zhang Z, Chen S, Chang Y, et al. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B. 2006;110:10799–10804.10.1021/jp057266i
  • Lowe AB, McCormick CL. Synthesis and solution properties of zwitterionic polymers. Chem Rev. 2002;102:4177–4190.10.1021/cr020371t
  • Zhang Z, Chao T, Chen S, et al. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir. 2006;22:10072–10077.10.1021/la062175d
  • Zhang Z, Chao T, Liu L, et al. Zwitterionic hydrogels: an in vivo implantation study. J Biomater Sci Polym Ed. 2009;20:1845–1859.10.1163/156856208X386444
  • Lalani R, Liu L. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromol. 2012;13:1853–1863.10.1021/bm300345e
  • Huang KT, Fang YL, Hsieh PS, et al. Zwitterionic nanocomposite hydrogels as effective wound dressings. J Mater Chem B. 2016;4:4206–4215.10.1039/C6TB00302H
  • Zeng R, Cheng J, Xu S, et al. Synthesis and drug-release studies of low-fouling zwitterionic hydrogels with enhanced mechanical strength. J Appl Polym Sci. 2014;131:41041.
  • Yang B, Wang C, Zhang Y, et al. A thermoresponsive poly(N-vinylcaprolactam-co-sulfobetaine methacrylate) zwitterionic hydrogel exhibiting switchable anti-biofouling and cytocompatibility. Polym Chem. 2015;6:3431–3442.10.1039/C5PY00123D
  • Lin CY, Wang YR, Lin CW, et al. Peptide-modified zwitterionic porous hydrogels for endothelial cell and vascular engineering. BioRes Open Access. 2014;3:297–310.10.1089/biores.2014.0048
  • Lin Y, Li G. An intermolecular quadruple hydrogen-bonding strategy to fabricate self-healing and highly deformable polyurethane hydrogels. J Mater Chem B. 2014;2:6878–6885.10.1039/C4TB00862F
  • Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.10.1016/0003-2697(85)90442-7
  • Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, et al. Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol. Mater Res Bull. 2008;43:90–96.10.1016/j.materresbull.2007.02.013
  • Chiang YC, Chang Y, Higuchi A, et al. Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. J Membr Sci. 2009;339:151–159.10.1016/j.memsci.2009.04.044
  • Geever LM, Devine DM, Nugent MJD, et al. The synthesis, characterisation, phase behaviour and swelling of temperature sensitive physically crosslinked poly(1-vinyl-2-pyrrolidinone)/poly(N-isopropylacrylamide) hydrogels. Eur Polymer J. 2006;42:69–80.10.1016/j.eurpolymj.2005.09.027
  • Luensmann D, Jones L. Albumin adsorption to contact lens materials: A review. Contact Lens and Anterior Eye. 2008;31:179–187.10.1016/j.clae.2008.05.004
  • Bune YV, Barabanova AI, Bogachev YS, et al. Copolymerization of acrylamide with various water-soluble monomers. Eur Polymer J. 1997;33:1313–1323.10.1016/S0014-3057(96)00258-3
  • Court JL, Redman RP, Wang JH, et al. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials. 2001;22:3261–3272.
  • Tranoudis I, Efron N. Tensile properties of soft contact lens materials. Cont Lens Anterior Eye. 2004;27:177–191.10.1016/j.clae.2004.08.002
  • Sigal GB, Mrksich M, Whitesides GM. Effect of surface wettability on the adsorption of proteins and detergents. J Am Chem Soc. 1998;120:3464–3473.10.1021/ja970819l
  • Wu J, Zhao C, Hu R, et al. Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers. Acta Biomater. 2014;10:751–760.10.1016/j.actbio.2013.09.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.