368
Views
21
CrossRef citations to date
0
Altmetric
Articles

A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering

, , , , &
Pages 1966-1983 | Received 08 Jun 2017, Accepted 02 Aug 2017, Published online: 17 Aug 2017

References

  • Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64:1292–1309.10.1016/j.addr.2012.01.016
  • Martino S, D’Angelo F, Armentano I, et al. Stem cell-biomaterial interactions for regenerative medicine. Biotechnol Adv. 2012;30:338–351.10.1016/j.biotechadv.2011.06.015
  • Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40:363–408.10.1615/CritRevBiomedEng.v40.i5
  • Delloye C, Cornu O, Druez V, et al. Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br. 2007;89:574–580.10.1302/0301-620X.89B5.19039
  • Bostrom R, Mikos AG. Tissue engineering of bone. Synth Biodegrad Polm Scaffolds, 1997;215–234.10.1007/978-1-4612-4154-6
  • Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–2359.10.1016/S0142-9612(00)00102-2
  • Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010;31:6279–6308.10.1016/j.biomaterials.2010.04.053
  • Puppi D, Chiellini F, Piras. M, et al. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;35:403–440.10.1016/j.progpolymsci.2010.01.006
  • White LJ, Kirby GTS, Cox HC, et al. Accelerating protein release from microparticles for regenerative medicine applications. Mater Sci Eng C Mater Biol Appl. 2013;33:2578–2583.10.1016/j.msec.2013.02.020
  • Nauth A, Ristevski B, Li R, et al. Growth factors and bone regeneration: how much bone can we expect? Injury. 2011;42:574–579.10.1016/j.injury.2011.03.034
  • Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus. 2012;2:366–377.10.1098/rsfs.2011.0123
  • Lu JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA based nanotechnology. Expert Rev Mol Diagn. 2009;9:325–341.10.1586/erm.09.15
  • Qutachi O, Vetsch JR, Gill D, et al. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature. Acta Biomater. 2014;10:5090–5098.10.1016/j.actbio.2014.08.015
  • Boukari Y, Scurr DJ, Qutachi O, et al. Physicomechanical properties of sintered scaffolds formed from porous and protein-loaded poly(dl-lactic-co-glycolic acid) microspheres for potential use in bone tissue engineering. J Biomater Sci Polym Ed. 2015;26:796–811.10.1080/09205063.2015.1058696
  • Patel ZS, Yamamoto M, Ueda H, et al. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater. 2008;4:1126–1138.10.1016/j.actbio.2008.04.002
  • Dhillon A, Schneider P, Kuhn G, et al. Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing. J Mater Sci Mater Med. 2011;22:2599–2605.10.1007/s10856-011-4443-z
  • Wang Y, Shi X, Ren L, et al. Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2010;93:84–92.
  • Tao C, Huang J, Lu Y, et al. Development and characterization of GRGDSPC-modified poly(lactide-co-glycolide acid) porous microspheres incorporated with protein-loaded chitosan microspheres for bone tissue engineering. Colloids Surf B. 2014;122:439–446.10.1016/j.colsurfb.2014.04.024
  • Kirby GTS, White LJ, Rahman CV, et al. PLGA-based microparticles for the sustained release of BMP-2. Polymers. 2011;3:571–586.10.3390/polym3010571
  • Zeng W, Huang J, Hu X, et al. Ionically cross-linked chitosan microspheres for controlled release of bioactive nerve growth factor. Int J Pharm. 2011;421:283–290.10.1016/j.ijpharm.2011.10.005
  • Qian L, Zhang H. One-step synthesis of protein-encapsulated microspheres in a porous scaffold by freeze-drying double emulsions and tuneable protein release. Chem Commun. 2013;49:8833–8835.10.1039/c3cc45012k
  • Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–5990.10.1016/j.biomaterials.2005.03.016
  • Fu Y, Du L, Wang Q, et al. In vitro sustained release of recombinant human bone morphogenetic protein-2 microspheres embedded in thermosensitive hydrogels. Pharmazie. 2012;67:299–303.
  • Hu X, Zhou J, Zhang N, et al. Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel. J Mech Behav Biomed Mater. 2008;1:352–359.10.1016/j.jmbbm.2008.02.001
  • Jiang T, Khan Y, Nair LS, et al. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. J Biomed Mater Res A. 2010;93:1193–1208.
  • Choi DH, Subbiah R, Kim IH, et al. Dual growth factor delivery using biocompatible core-shell microcapsules for angiogenesis. Small. 2013;9:3468–3476.10.1002/smll.v9.20
  • Chakravarthi SS, Robinson DH. Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles. Int J Pharm. 2011;409:111–120.10.1016/j.ijpharm.2011.02.034
  • Casettari L, Castagnino E, Stolnik S, et al. Surface characterisation of bioadhesive PLGA/chitosan microparticles produced by supercritical fluid technology. Pharm Res. 2011;28:1668–1682.10.1007/s11095-011-0403-z
  • Han F, Zhou F, Yang X, et al. Facile preparation of PLGA microspheres with diverse internal structure by modified double-emulsion method for controlled release. Polym Eng Sci. 2015;55:896–906.10.1002/pen.v55.4
  • Pandey CM, Sharma A, Sumana G, et al. Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection. Nanoscale. 2013;5:3800–3807.10.1039/c3nr34355c
  • Jiang T, Nukavarapu SP, Deng M, et al. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomater. 2010;6:3457–3470.10.1016/j.actbio.2010.03.023
  • Song K, Liu Y, Macedo HM, et al. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres. Mater Sci Eng C. 2013;33:1506–1513.10.1016/j.msec.2012.12.054
  • Yilgor P, Hasirci N, Hasirci V. Sequential BMP-2/BMP-7 delivery from polyester nanocapsules. J Biomed Mater Res – Part A. 2010;93:528–536.
  • Yilgor P, Tuzlakoglu K, Reis RL, et al. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials. 2009;30:3551–3559.10.1016/j.biomaterials.2009.03.024
  • Rafati A, Boussahel A, Shakesheff KM, et al. Chemical and spatial analysis of protein loaded PLGA microspheres for drug delivery applications. J Control Release. 2012;162:321–329.10.1016/j.jconrel.2012.05.008
  • Gould TW, Birchall JP, Mallick AS, et al. Development of a porous poly(dl-lactic acid-co-glycolic acid)-based scaffold for mastoid air-cell regeneration. Laryngoscope. 2013;123:3156–3161.10.1002/lary.24173
  • Azevedo JR, Sizilio RH, Brito MB, et al. Physical and chemical characterization insulin-loaded chitosan-TPP nanoparticles. J Therm Anal Calorim. 2011;106:685–689.10.1007/s10973-011-1429-5
  • Misch E, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg. 1999;57:700–706.10.1016/S0278-2391(99)90437-8
  • Ganji F, Abdekhodaie MJ. Chitosan-g-PLGA copolymer as a thermosensitive membrane. Carbohydr Polym. 2010;80:740–746.10.1016/j.carbpol.2009.12.021
  • Balmert SC, Zmolek AC, Glowacki AJ, et al. Positive charge of “sticky” peptides and proteins impedes release from negatively charged PLGA matrices. J Mater Chem B. 2015;3:4723–4734.10.1039/C5TB00515A
  • Boeris V, Farruggia B, Pico G. Chitosan-bovine serum albumin complex formation: a model to design an enzyme isolation method by polyelectrolyte precipitation. J Chromatogr B. 2010;878:1543–1548.10.1016/j.jchromb.2010.04.008
  • Manca ML, Loy G, Zaru M, et al. Release of rifampicin from chitosan, PLGA and chitosan-coated PLGA microparticles. Colloids Surf B. 2008;67:166–170.10.1016/j.colsurfb.2008.08.010
  • Lee J-Y, Nam S-H, Im S-Y, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release. 2002;78:187–197.10.1016/S0168-3659(01)00498-9
  • Declercq H, Verbeeck R, Deridder L, et al. Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures. Biomaterials. 2005;26:4964–4974.10.1016/j.biomaterials.2005.01.025
  • Stein GS, Lian JB, Owen T. Relationship of cell growth to the regulation of tissue-specific gene expression during oseoblast differentiation. FASEB J. 1990;4:3111–3123.
  • Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials. 2006;27:4894–4903.10.1016/j.biomaterials.2006.05.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.