664
Views
28
CrossRef citations to date
0
Altmetric
Review

Water-soluble and amphiphilic phospholipid copolymers having 2-methacryloyloxyethyl phosphorylcholine units for the solubilization of bioactive compounds

, &
Pages 844-862 | Received 31 Mar 2017, Accepted 05 Sep 2017, Published online: 20 Sep 2017

References

  • Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv. 2007;4(4):403–416.10.1517/17425247.4.4.403
  • Domurado D, Vert M. Bioresorbable polyelectrolyte amphiphiles as nanosized carriers for lipophilic drug solubilization and delivery. J Biomater Sci Polym Ed. 2007;18(3):287–301.10.1163/156856207779996940
  • Hoskins C, Thoo-Lin PK, Cheng WP. A review on comb-shaped amphiphilic polymers for hydrophobic drug solubilization. Ther Deliv. 2012;3(1):59–79.10.4155/tde.11.130
  • Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73(2–3):137–172.10.1016/S0168-3659(01)00299-1
  • Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst. 2003;20(5):357–403.10.1615/CritRevTherDrugCarrierSyst.v20.i5
  • Tang Y, Liu SY, Armes SP, et al. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules. 2003;4(6):1636–1645.10.1021/bm030026t
  • Latere Dwan’Isa JP, Rouxhet L, Préat V, et al. Prediction of drug solubility in amphiphilic di-block copolymer micelles: the role of polymer-drug compatibility. Pharmazie. 2007;62(7):499–504.
  • Elhasi S, Astaneh R, Lavasanifar A. Solubilization of an amphiphilic drug by poly(ethylene oxide)-block-poly(ester) micelles. Eur J Pharm Biopharm. 2007;65(3):406–413.10.1016/j.ejpb.2006.12.022
  • Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61(10):768–784.10.1016/j.addr.2009.04.016
  • Ishihara K. Phospholipid polymers. In: Mark HF, editor. Encyclopedia of polymer science and technology. 4th ed. Hoboken (NJ): Wiley; 2014. p. 635–659.
  • Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J. 1990;22:355–360.10.1295/polymj.22.355
  • Ueda T, Oshida H, Kurita K, et al. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym J. 1992;24:1259–1269.10.1295/polymj.24.1259
  • Ishihara K, Fukazawa K. Chapter 5, 2-Methacryloyloxyethyl phosphorylcholine polymers. In: Monge S, David G, editors. Phosphorus based polymers: from synthesis to applications. Cambridge: Royal Society of Chemistry; 2014. p. 68–96.10.1039/2044-0804
  • Lewis AL. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B Biointerfaces. 2000;18(3–4):261–275.10.1016/S0927-7765(99)00152-6
  • Lewis AL, Hughes PD, Kirkwood LC, et al. Synthesis and characterisation of phosphorylcholine-based polymers useful for coating blood filtration devices. Biomaterials. 2000;21(18):1847–1859.10.1016/S0142-9612(00)00055-7
  • Lewis AL, Willis SL, Small SA, et al. Drug loading and elution from a phosphorylcholine polymer-coated coronary stent does not affect long-term stability of the coating in vivo. Biomed Mater Eng. 2004;14(4):355–370.
  • Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal Bioanal Chem. 2005;381(3):534–546.10.1007/s00216-004-2805-9
  • Lomas H, Massignani M, Abdullah KA, et al. Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss. 2008;139:143–159.10.1039/b717431d
  • Xu Y, Takai M, Ishihara K. Phospholipid polymer biointerfaces for lab-on-a-chip devices. Ann Biomed Eng. 2010;38(6):1938–1953.10.1007/s10439-010-0025-3
  • Monge S, Canniccioni B, Graillot A, et al. Phosphorus-containing polymers: a great opportunity for the biomedical field. Biomacromolecules. 2011;12(6):1973–1982.10.1021/bm2004803
  • Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater. 2012;13(6):064101.10.1088/1468-6996/13/6/064101
  • Canton I, Massignani M, Patikarnmonthon N, et al. Fully synthetic polymer vesicles for intracellular delivery of antibodies in live cells. FASEB J. 2013;27(1):98–108.10.1096/fj.12-212183
  • Ishihara K, Mu M, Konno T, et al. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). J Biomater Sci Polym Ed. 2017;28(10–12):884–899.10.1080/09205063.2017.1298278
  • Kojima R, Kasuya MCZ, Ishihara K, et al. Synthesis of amphiphilic copolymers by soap-free interface-mediated polymerization. Polym J. 2009;41:370–373.10.1295/polymj.PJ2008322
  • Kojima R, Kasuya MCZ, Ishihara K, et al. Physicochemical delivery of amphiphilic copolymers to specific organelles. Polym J. 2011;43:718–722.10.1038/pj.2011.49
  • Ishihara K, Iwasaki Y, Nakabayashi N. Polymeric lipid nanosphere consisting of water soluble poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate). Polym J. 1999;31:1231–1236.10.1295/polymj.31.1231
  • Hancock B, York P, Rowe RC. The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm. 1997;148:1–21.10.1016/S0378-5173(96)04828-4
  • Goda T, Goto Y, Ishihara K. Cell-penetrating macromolecules: direct penetration of amphipatic phospholipid polymers across plasma membrane of living cells. Biomaterials. 2010;31:2380–2387.10.1016/j.biomaterials.2009.11.095
  • Goda T, Ishihara K, Miyahara Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J Appl Polym Sci. 2015;132:41766 ( p. 10).
  • Goto Y, Matsuno R, Konno T, et al. Artificial cell membrane-covered nanoparticles embedding quantum dots as stable and highly sensitive fluorescence bioimaging probes. Biomacromolecules. 2008;9:3252–3257.10.1021/bm800819r
  • Ishihara K, Chen W, Liu Y, et al. Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells. Sci Technol Adv Mater. 2016;17:300–312.10.1080/14686996.2016.1190257
  • Deepa G, Ashwanikmar N, Pillai JJ, et al. Polymer nanoparticles – a novel strategy for administration of paclitaxel in cancer chemotherapy. Curr Med Chem. 2012;19:6207–6213.10.2174/0929867311209066207
  • Sharma A, Straubinger RM. Novel taxol formulations: preparation and characterization of taxol-containing liposomes. Pharm Res. 1994;11:889–896.10.1023/A:1018994111594
  • Xu X, Wang L, Xu HQ, et al. Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev. 2013;14:2591–2594.10.7314/APJCP.2013.14.4.2591
  • Li C, Yu D, Inoue T, et al. Synthesis and evaluation of water-soluble polyethylene glycol-paclitaxel conjugate as a paclitaxel prodrug. Anticancer Drugs. 1996;7:642–648.10.1097/00001813-199608000-00004
  • Greenwald RB, Gilbert CW, Pendri A, et al. Drug delivery systems: water soluble taxol 2’-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness. J Med Chem. 1996 Jan;39:424–431.10.1021/jm950475e
  • Kakinoki A, Kaneo Y, Tanaka T, et al. Synthesis and evaluation of water-soluble poly(vinyl alcohol)-paclitaxel conjugate as a macromolecular prodrug. Biol Pharm Bull. 2008;31:963–969.10.1248/bpb.31.963
  • Li C, Price JE, Milas L, et al. Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin Cancer Res. 1999;5:891–897.
  • Li C, Yu DF, Newman RA, et al. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res. 1998;58:2404–2409.
  • Singer JW, Baker B, De Vries P, et al. Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX], a biodegradable polymeric drug conjugate: characterization, preclinical pharmacology, and preliminary clinical data. Adv Exp Med Biol. 2003;519:81–99.
  • Konno T, Watanabe J, Ishihara K. Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers. J Biomed Mater Res A. 2003;65:209–214.10.1002/(ISSN)1097-4636
  • Wada M, Jinno H, Ueda M, et al. Efficacy of an MPC-BMA co-polymer as a nanotransporter for paclitaxel. Anticancer Res. 2007;27:1431–1435.
  • Hachimine K, Shibaguchi H, Kuroki M, et al. Sonodynamic therapy of cancer using a novel porphyrin derivative, DCPH-P-Na(I), which is devoid of photosensitivity. Cancer Sci. 2007;98:916–920.10.1111/cas.2007.98.issue-6
  • Soma D, Kitayama J, Konno T, et al. Intraperitoneal administration of paclitaxel solubilized with poly(2-methacryloxyethyl phosphorylcholine-co-n-butyl methacrylate) for peritoneal dissemination of gastric cancer. Cancer Sci. 2009;100:1979–1985.10.1111/cas.2009.100.issue-10
  • Takeuchi H, Ueda M, Oyama T, et al. Molecular diagnosis and translymphatic chemotherapy targeting sentinel lymph nodes of patients with early gastrointestinal cancers. Digestion. 2010;82:187–191.10.1159/000309464
  • Kamei T, Kitayama J, Yamaguchi H, et al. Spatial distribution of intraperitoneally administrated paclitaxel nanoparticles solubilized with poly (2-methacryloxyethyl phosphorylcholine-co-n-butyl methacrylate) in peritoneal metastatic nodules. Cancer Sci. 2011;102:200–205.10.1111/cas.2010.102.issue-1
  • Kano T, Kakinuma C, Wada S, et al. Enhancement of drug solubility and absorption by copolymers of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate. Drug Metab Pharmacokinet. 2011;26:79–86.10.2133/dmpk.DMPK-10-RG-070
  • Onoue S, Kojo Y, Suzuki H, et al. Development of novel solid dispersion of tranilast using amphiphilic block copolymer for improved oral bioavailability. Int J Pharm. 2013;452:220–226.10.1016/j.ijpharm.2013.05.022
  • Emoto S, Sunami E, Yamaguchi H, et al. Drug development for intraperitoneal chemotherapy against peritoneal carcinomatosis from gastrointestinal cancer. Surg Today. 2014;44:2209–2220.10.1007/s00595-014-0848-x
  • Kitayama J. Intraperitoneal chemotherapy against peritoneal carcinomatosis: current status and future perspective. Surg Oncol. 2014;23:99–106.10.1016/j.suronc.2014.03.004
  • Onoue S, Suzuki H, Kojo Y, et al. Self-micellizing solid dispersion of cyclosporine A with improved dissolution and oral bioavailability. Eur J Pharm Sci. 2014;62:16–22.10.1016/j.ejps.2014.05.006
  • Oyama T, Takeuchi H, Matsuda S, et al. Translymphatic chemotherapy targeting sentinel lymph nodes using a novel phospholipid polymer-Paclitaxel conjugate. Anticancer Res. 2014;34(4):1751–1757.
  • Tamura K, Kikuchi E, Konno T, et al. Therapeutic effect of intravesical administration of paclitaxel solubilized with poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) in an orthotopic bladder cancer model. BMC Cancer. 2015;15:317.10.1186/s12885-015-1338-2
  • Watano S, Matsuo M, Nakamura H, et al. Improvement of dissolution rate of poorly water-soluble drug by wet grinding with bio-compatible phospholipid polymer. Chem Eng Sci. 2015;125:25–31.10.1016/j.ces.2014.09.010
  • Suzuki H, Kojo Y, Yakushiji K, et al. Strategic application of self-micellizing solid dispersion technology to respirable powder formulation of tranilast for improved therapeutic potential. Int J Pharm. 2016;499:255–262.10.1016/j.ijpharm.2015.12.065
  • Suzuki H, Ueno K, Mizumoto T, et al. Self-micellizing solid dispersion of cyclosporine A for pulmonary delivery: physicochemical, pharmacokinetic and safety assessments. Eur J Pharm Sci. 2017;96:107–114.10.1016/j.ejps.2016.09.015
  • Shimada K, Matsuda S, Jinno H, et al. The non-invasive treatment for sentinel lymph node metastasis by photodynamic therapy using phospholipid polymer as a nanotransporter of verteporfin. BioMed Res Int. 2017;2017:7412865.
  • Konno T. Solubilization of poorly soluble drugs using with biocompatible polymer materials. BIO INDUSTRY. 2003;20:35–43. Japanese.
  • Yudasaka M, Yomogida Y, Zhang M, et al. Near-infrared photoluminescent carbon nanotubes for imaging of brown fat. Sci Rep. 2017;7:44760.10.1038/srep44760
  • Konno T, Watanabe J, Ishihara K. Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups. Biomacromolecules. 2004;5(2):342–347.10.1021/bm034356p
  • Lin X, Konno T, Ishihara K. Cell-membrane-permeable and cytocompatible phospholipid polymer nanoprobes conjugated with molecular beacons. Biomacromolecules. 2014;15:150–157.10.1021/bm401430 k
  • Chiba N, Ueda M, Shimada T, et al. Novel immunosuppressant agents targeting activated lymphocytes by biocompatible MPC polymer conjugated with interleukin-2. Eur Surg Res. 2007;39:103–110.10.1159/000099598
  • Shimada T, Ueda M, Jinno H, et al. Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Res. 2009;29:1009–1014.
  • Kameyama N, Matsuda S, Itano O, et al. Photodynamic therapy using an anti-EGF receptor antibody complexed with verteporfin nanoparticles: a proof of concept study. Cancer Biother Radiopharm. 2011;26:697–704.10.1089/cbr.2011.1027
  • Chen X, Parelkar SS, Henchey E, et al. PolyMPC-doxorubicin prodrugs. Bioconjug Chem. 2012;23(9):1753–1763.10.1021/bc200667s
  • McRae Page S, Henchey E, Chen X, et al. Efficacy of polyMPC-DOX prodrugs in 4T1 tumor-bearing mice. Mol Pharm. 2014;11(5):1715–1720.10.1021/mp500009r
  • Wong KE, Mora MC, Skinner M, et al. Evaluation of polyMPC-Dox prodrugs in a human ovarian tumor model. Mol Pharm. 2016;13(5):1679–1687.10.1021/acs.molpharmaceut.6b00092
  • Skinner M, Ward SM, Emrick T. Versatile synthesis of polymer-temozolomide conjugates. ACS Macro Lett. 2017;6:215–218.10.1021/acsmacrolett.7b00007
  • Chen X, McRae S, Parelkar S, et al. Polymeric phosphorylcholine-camptothecin conjugates prepared by controlled free radical polymerization and click chemistry. Bioconjug Chem. 2009;20(12):2331–2341.10.1021/bc900339x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.