451
Views
24
CrossRef citations to date
0
Altmetric
Articles

Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering

, , , &
Pages 917-931 | Received 10 Apr 2017, Accepted 14 Sep 2017, Published online: 29 Sep 2017

References

  • Varghese S, Theprungsirikul P, Sahani S, et al. Glucosamine modulates chondrocyte proliferation, matrix synthesis, and gene expression. Osteoarthritis Cartilage. 2007 Jan;15:59–68. DOI:10.1016/j.joca.2006.06.008. PubMed PMID: 16849037.
  • Wang DA, Varghese S, Sharma B, et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat. Mater.. 2007 May;6:385–392. DOI:10.1038/nmat1890. PubMed PMID: 17435762.
  • Li WJ, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005 Feb;26:599–609. DOI:10.1016/j.biomaterials.2004.03.005. PubMed PMID: 15282138.
  • Jung Y, Kim SH, Kim YH, et al. The effect of hybridization of hydrogels and poly(L-lactide-co-ε-caprolactone) scaffolds on cartilage tissue engineering. J Biomater Sci Polym Ed. 2010;21:581–592. DOI:10.1163/156856209X430579. PubMed PMID: 20338093.
  • Trzeciak T, Rybka JD, Richter M, et al. Cells and nanomaterial-based tissue engineering techniques in the treatment of bone and cartilage injuries. J Nanosci Nanotechnol. 2016;16:8948–8952. DOI:10.1166/jnn.2016.12732
  • Donnelly PE, Chen T, Finch A, et al. Photocrosslinked tyramine-substituted hyaluronate hydrogels with tunable mechanical properties improve immediate tissue-hydrogel interfacial strength in articular cartilage. J Biomater Sci Polym Ed. 2017 Apr;28:582–600. DOI:10.1080/09205063.2017.1289035. PubMed PMID: 28134036
  • Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12:107–124. PubMed PMID: 11334185.10.1163/156856201744489
  • Knoll GA, Romanelli SM, Brown AM, et al. Multilayered short peptide-alginate blends as new materials for potential applications in cartilage tissue regeneration. J Nanosci Nanotechnol. 2016 Mar;16:2464–2473. PubMed PMID: 27455656.10.1166/jnn.2016.12039
  • Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials. 2016 Aug;98:1–22. DOI:10.1016/j.biomaterials.2016.04.018. PubMed PMID: 27177218; PubMed Central PMCID: PMC4899115.
  • Li G, Fu N, Xie J, et al. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) based electrospun 3D scaffolds for delivery of autogeneic chondrocytes and adipose-derived stem cells: evaluation of cartilage defects in rabbit. J Biomed Nanotechnol. 2015 Jan;11:105–116. PubMed PMID: 26301304.10.1166/jbn.2015.2053
  • Hwang Y, Phadke A, Varghese S. Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells. Regener Med. 2011 Jul;6:505–524. DOI:10.2217/rme.11.38. PubMed PMID: 21749208.
  • Lim HL, Hwang Y, Kar M, et al. Smart hydrogels as functional biomimetic systems. Biomater Sci. 2014;2:603–618. DOI:10.1039/c3bm60288e. PubMed PMID: WOS:000333579600002; English.
  • Liao J, Qu Y, Chu B, et al. Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci Rep. 2015 May 11;5:9879. DOI:10.1038/srep09879. PubMed PMID: 25961959; PubMed Central PMCID: PMC4426702.
  • Hung KC, Tseng CS, Dai LG, et al. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials. 2016 Mar;83:156–168. DOI:10.1016/j.biomaterials.2016.01.019. PubMed PMID: 26774563.
  • Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (NY). 1994 Jul;12:689–693. PubMed PMID: 7764913.
  • Luu YK, Kim K, Hsiao BS, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Controlled Release. 2003 Apr 29;89:341–353. PubMed PMID: 12711456.10.1016/S0168-3659(03)00097-X
  • Hwang Y, Sangaj N, Varghese S. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Tissue Eng Part A. 2010 Oct;16:3033–3041. DOI:10.1089/ten.TEA.2010.0045. PubMed PMID: 20486791.
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014 Aug;32:773–785. DOI:10.1038/nbt.2958. PubMed PMID: 25093879.
  • Pati F, Song TH, Rijal G, et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 2015 Jan;37:230–241. DOI:10.1016/j.biomaterials.2014.10.012. PubMed PMID: 25453953.
  • Wang X, Li T, Ma H, et al. A 3D-printed scaffold with MoS2 nanosheets for tumor therapy and tissue regeneration [Original Article]. NPG Asia Mater. 2017 04/21/online;9:e376. DOI:10.1038/am.2017.47
  • Trachtenberg JE, Placone JK, Smith BT, et al. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. J Biomater Sci Polym Ed. 2017 Apr;28:532–554. DOI:10.1080/09205063.2017.1286184. PubMed PMID: 28125380.
  • Cooke MN, Fisher JP, Dean D, et al. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res. 2003 Feb 15;64B:65–69. DOI:10.1002/jbm.b.10485. PubMed PMID: 12516080.
  • Du DJ , Asaoka T, Shinohara M, et al . Microstereolithography-based fabrication of anatomically shaped beta-tricalcium phosphate scaffolds for bone tissue engineering.Biomed Res Int. 2015; 2015: Artn 859456. DOI: 10.1155/2015/859456. PubMed PMID: WOS:000363171000001; English.
  • Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003 Jun;24:2363–2378. PubMed PMID: 12699674.10.1016/S0142-9612(03)00030-9
  • Timmer MD, Horch RA, Ambrose CG, et al. Effect of physiological temperature on the mechanical properties and network structure of biodegradable poly(propylene fumarate)-based networks. J Biomater Sci Polym Ed. 2003;14:369–382. PubMed PMID: 12747675.10.1163/156856203321478874
  • Timmer MD, Ambrose CG, Mikos AG. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials. 2003 Feb;24:571–577. PubMed PMID: 12437951.10.1016/S0142-9612(02)00368-X
  • Liu X, Miller AL 2nd, Waletzki BE, et al. Novel biodegradable poly(propylene fumarate)-co-poly(l-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications. RSC Adv. 2015 Jan 1;5:21301–21309. DOI:10.1039/C5RA00508F. PubMed PMID: 26989483; PubMed Central PMCID: PMC4792309.
  • Wang S, Lu L, Yaszemski MJ. Bone-tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties. Biomacromol. 2006 Jun;7:1976–1982. DOI:10.1021/bm060096a. PubMed PMID: 16768422; PubMed Central PMCID: PMC2530912.
  • Fisher JP, Dean D, Mikos AG. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials. 2002 Nov;23:4333–4343. PubMed PMID: 12219823.10.1016/S0142-9612(02)00178-3
  • Fisher JP, Holland TA, Dean D, et al. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J Biomater Sci Polym Ed. 2001 2001/01/01;12:673–687. DOI:10.1163/156856201316883476
  • Beke S, Anjum F, Ceseracciu L, et al. Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm. Laser Phys. 2013 Mar;23: Artn 035602. DOI:10.1088/1054-660x/23/3/035602. PubMed PMID: WOS:000318005700023; English.
  • Walker JM, Bodamer E, Krebs O, et al. Effect of chemical and physical properties on the in vitro degradation of 3D printed high resolution poly(propylene fumarate) scaffolds. Biomacromol. 2017 Apr 10;18:1419–1425. DOI:10.1021/acs.biomac.7b00146. PubMed PMID: 28291335.
  • Tang A, Li J, Zhao S, et al. Biodegradable tissue engineering scaffolds based on nanocellulose/PLGA nanocomposite for NIH 3T3 cell cultivation. J Nanosci Nanotechnol. 2017;17:3888–3895. DOI:10.1166/jnn.2017.13115.
  • Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003 Nov;24:4385–4415. DOI:10.1016/S0142-9612(03)00343-0. PubMed PMID: WOS:000185037700006; English.
  • Cooke MN, Fisher JP, Dean D, et al. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B. 2003 Feb 15;64:65–69. DOI:10.1002/jbm.b.10485. PubMed PMID: WOS:000182424600002; English.
  • Sawyer AA, Hennessy KM, Bellis SL. Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins. Biomaterials. 2005 May;26:1467–1475. DOI:10.1016/j.biomaterials.2004.05.008. PubMed PMID: WOS:000226422200003; English.
  • Wang MO, Vorwald CE, Dreher ML, et al. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv Mater. 2015 Jan;27:138–144. DOI:10.1002/adma.201403943. PubMed PMID: WOS:000347239600019; English.
  • Wallace J, Wang MO, Thompson P, et al. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package. Biofabrication. 2014 Mar;6: Artn 015003. DOI:10.1088/1758-5082/6/1/015003. PubMed PMID: WOS:000332844400003; English.
  • Ho MH, Hou LT, Tu CY, et al. Promotion of cell affinity of porous PLLA scaffolds by immobilization of RGD peptides via plasma treatment. Macromol Biosci. 2006 Jan 5;6:90–98. DOI:10.1002/mabi.200500130. PubMed PMID: WOS:000234675400011; English.
  • Chu PK, Chen JY, Wang LP, et al. Plasma-surface modification of biomaterials. Mater Sci Eng R Rep. 2002 Mar 29;36:143–206. DOI:10.1016/S0927-796x(02)00004-9. Pii S0927-796x(02)00004-9. PubMed PMID: WOS:000174818200001; English.10.1016/S0927-796X(02)00004-9
  • Lee C-M, Yang S-W, Jung S-C, et al. Oxygen plasma treatment on 3D-printed chitosan/gelatin/hydroxyapatite scaffolds for bone tissue engineering. J Nanosci Nanotechnol. 2017;17:2747–2750. DOI:10.1166/jnn.2017.13337
  • Park YO, Myung SW, Kook MS, et al. Cell proliferation on macro/nano surface structure and collagen immobilization of 3D polycaprolactone scaffolds. J Nanosci Nanotechnol. 2016 Feb;16:1415–1419. PubMed PMID: 27433597.10.1166/jnn.2016.11920
  • Frazier DD, Lathi VK, Gerhart TN, et al. Ex vivo degradation of a poly(propylene glycol-fumarate) biodegradable particulate composite bone cement. J Biomed Mater Res. 1997 Jun 5;35:383–389. PubMed PMID: 9138072.10.1002/(ISSN)1097-4636
  • Lan PX, Lee JW, Seol YJ, et al. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med. 2009 Jan;20:271–279. DOI:10.1007/s10856-008-3567-2. PubMed PMID: 18763023.
  • Lee IH, Cho DW. Micro-stereolithography photopolymer solidification patterns for various laser beam exposure conditions. Int J Adv Manuf Technol. 2003 Oct;22:410–416. DOI:10.1007/s00170-003-1538-9. PubMed PMID: WOS:000186247100012; English.
  • Tong YW, Shoichet MS. Peptide surface modification of poly(tetrafluoroethylene-co-hexafluoropropylene) enhances its interaction with central nervous system neurons. J Biomed Mater Res. 1998 Oct;42:85–95. PubMed PMID: 9740010.10.1002/(ISSN)1097-4636
  • Shahbazi S, Jafari Y, Moztarzadeh F, et al. Evaluation of effective parameters for the synthesis of poly(propylene fumarate) by response surface methodology. J Appl Polym Sci. 2014 Oct 15;131: Artn 40932. DOI:10.1002/App.40932. PubMed PMID: WOS:000340239000047; English.
  • Lee JW, Ahn G, Kim JY, et al. Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. J Mater Sci Mater Med. 2010 Dec;21:3195–3205. DOI:10.1007/s10856-010-4173-7. PubMed PMID: 20981473.
  • Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015 Mar;1:9. Artn 4. DOI:10.1186/s13036-015-0001-4. PubMed PMID: WOS:000352596900001; English.
  • Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B. 2013 Dec 1;19:485–502. DOI:10.1089/ten.teb.2012.0437. PubMed PMID: WOS:000326962100003; English.
  • Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B. 2010 Aug;16:371–383. DOI:10.1089/ten.teb.2009.0639. PubMed PMID: WOS:000280375800001; English.
  • Shu XZ, Ghosh K, Liu YC, et al. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J Biomed Mater Res A. 2004 Feb 1;68:365–375. DOI:10.1002/jbm.a.20002. PubMed PMID: WOS:000188710000019; English.
  • Petrie TA, Capadona JR, Reyes CD, et al. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials. 2006 Nov;27:5459–5470. DOI:10.1016/j.biomaterials.2006.06.027. PubMed PMID: WOS:000240611000013; English.
  • Kim HD, Heo J, Hwang Y, et al. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering. Tissue Eng Part A. 2015 Feb;21:757–766. DOI:10.1089/ten.TEA.2014.0233. PubMed PMID: 25266634; PubMed Central PMCID: PMCPMC4333611.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.