237
Views
4
CrossRef citations to date
0
Altmetric
Articles

A targeted graphene nanoplatform carrying histamine dihydrochloride for effective inhibition of leukemia-induced immunosuppression

, , , &
Pages 734-749 | Received 29 Mar 2017, Accepted 03 Oct 2017, Published online: 19 Oct 2017

References

  • Romero AI, Thorén FB, Aurelius J, et al. Post-consolidation immunotherapy with histamine dihydrochloride and interleukin-2 in AML. Scand J Immunol. 2009;70:194–205.10.1111/sji.2009.70.issue-3
  • Danier AC, Melo RP, Napimoga MH, et al. The role of natural killer cells in chronic myeloid leukemia. Rev Bras Hematol Hemoter. 2011;33:216–220.10.5581/1516-8484.20110057
  • Costello RT, Sivori S, Marcenaro E, et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood. 2002;99:3661–3667.10.1182/blood.V99.10.3661
  • Notter M, Willinger T, Erben U, et al. Targeting of a B7-1 (CD80) immunoglobulin G fusion protein to acute myeloid leukemia blasts increases their costimulatory activity for autologous remission T cells. Blood. 2001;97:3138–3145.10.1182/blood.V97.10.3138
  • Contini P, Zocchi MR, Pierri I, et al. In vivo apoptosis of CD8+ lymphocytes in acute myeloid leukemia patients: involvement of soluble HLA-I and Fas ligand. Leukemia. 2007;21:253–260.10.1038/sj.leu.2404494
  • Hole PS, Darley RL, Tonks A. Do reactive oxygen species play a role in myeloid leukemias? Blood. 2011;117:5816–5826.10.1182/blood-2011-01-326025
  • Hellstrand K, Brune M, Dahlgren C, et al. Alleviating oxidative stress in cancer immunotherapy: a role for histamine? Med Oncol. 2000;17:258–269.10.1007/BF02782190
  • Betten Å, Bylund J, Cristophe T, et al. A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J Clin Invest. 2001;108:1221–1228.10.1172/JCI13430
  • Brune M, Castaigne S, Catalano J, et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood. 2006;108:88–96.10.1182/blood-2005-10-4073
  • Hellstrand K, Asea A, Dahlgren C, et al. Histaminergic regulation of NK cells. Role of monocyte-derived reactive oxygen metabolites. J Immunol. 1994;153:4940–4947.
  • Hansson M, Hermodsson S, Brune M, et al. Histamine protects T cells and natural killer cells against oxidative stress. J Interferon Cytokine Res. 1999;19:1135–1144.10.1089/107999099313073
  • Thoren FB, Romero AI, Hellstrand K. Oxygen radicals induce poly(ADP-ribose) polymerase-dependent cell death in cytotoxic lymphocytes. J Immunol. 2006;176:7301–7307.10.4049/jimmunol.176.12.7301
  • Asea A, Hermodsson S, Hellstrand K. Histaminergic regulation of natural killer cell-mediated clearance of tumour cells in mice. Scand J Immunol. 1996;43:9–15.10.1046/j.1365-3083.1996.d01-14.x
  • Geim AK. Graphene: status and prospects. Science. 2009;324:1530–1534.10.1126/science.1158877
  • McCallion C, Burthem J, Rees-Unwin K, et al. Graphene in therapeutics delivery: problems, solutions and future opportunities. Eur J Pharm Biopharm. 2016;104:235–250.10.1016/j.ejpb.2016.04.015
  • Seabra AB, Paula AJ, de Lima R, et al. Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol. 2014;27:159–168.10.1021/tx400385x
  • Tonelli FM, Goulart VA, Gomes KN, et al. Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine. 2015;10:2423–2450.10.2217/nnm.15.65
  • Bitounis D, Ali-Boucetta H, Hong BH, et al. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25:2258–2268.10.1002/adma.201203700
  • Yang K, Li Y, Tan X, et al. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small. 2013;9:1492–1503.10.1002/smll.201201417
  • Li Y, Liu Y, Fu Y, et al. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials. 2012;33:402–411.10.1016/j.biomaterials.2011.09.091
  • Ma Y, Shen H, Tu X, et al. Assessing in vivo toxicity of graphene materials: current methods and future outlook. Nanomedicine. 2014;9:1565–1580.10.2217/nnm.14.68
  • Zhang W, Wang C, Li Z, et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater. 2012;24:5391–5397.10.1002/adma.201202678
  • Guo X, Mei N. Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal. 2014;22:105–115.10.1016/j.jfda.2014.01.009
  • Chang Y, Yang ST, Liu JH, et al. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 2011;200:201–210.10.1016/j.toxlet.2010.11.016
  • Duch MC, Budinger GR, Liang YT, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011;11:5201–5207.10.1021/nl202515a
  • Zhang W, Yan L, Li M, et al. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicol Lett. 2015;237:61–71.10.1016/j.toxlet.2015.05.021
  • Lucente-Schultz RM, Moore VC, Leonard AD, et al. Antioxidant single-walled carbon nanotubes. J Am Chem Soc. 2009;131:3934–3941.10.1021/ja805721p
  • Fenoglio I, Tomatis M, Lison D, et al. Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic Biol Med. 2006;40:1227–1233.10.1016/j.freeradbiomed.2005.11.010
  • Martín R, Menchón C, Apostolova N, et al. Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress. ACS Nano. 2010;4:6957–6965.10.1021/nn1019412
  • Bitner BR, Marcano DC, Berlin JM, et al. Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. ACS Nano. 2012;6:8007–8014.10.1021/nn302615f
  • Morita Y, Suzuki S, Sato K, et al. Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat Chem. 2011;3:197–204.10.1038/nchem.985
  • Wright JS, Johnson ER, DiLabio GA. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc. 2001;123:1173–1183.10.1021/ja002455u
  • Bors W, Heller W, Michel C, et al. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol. 1990;186:343–355.10.1016/0076-6879(90)86128-I
  • Qiu Y, Wang Z, Owens AC, et al. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale. 2014;6:11744–11755.10.1039/C4NR03275F
  • Muthoosamy K, Abubakar IB, Bai RG, et al. Exceedingly higher co-loading of curcumin and aclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Sci Rep. 2016;6:32808.
  • Lalwani G, D’Agati M, Khan AM, et al. Toxicology of graphene-based nanomaterials. Adv Drug Deliv Rev. 2016;105:109–144.10.1016/j.addr.2016.04.028
  • Zhang B, Wei P, Zhou Z, et al. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv Drug Deliv Rev. 2016;105:145–162.10.1016/j.addr.2016.08.009
  • Hwang DW, Kim HY, Li F, et al. In vivo visualization of endogenous miR-21 using hyaluronic acid-coated graphene oxide for targeted cancer therapy. Biomaterials. 2017;121:144–154.10.1016/j.biomaterials.2016.12.028
  • Chang G, Zhang H, Wang J, et al. CD44 targets Wnt/β-catenin pathway to mediate the proliferation of K562 cells. Cancer Cell Int.. 2013;13:117.10.1186/1475-2867-13-117
  • Wu HX, Shi HL, Wang YP, et al. Hyaluronic acid conjugated graphene oxide for targeted drug delivery. Carbon. 2014;69:379–389.10.1016/j.carbon.2013.12.039
  • Song F, Hu W, Xiao L, et al. Enzymatically cross-linked hyaluronic acid/graphene oxide nanocomposite hydrogel with pH-responsive release. J Biomater Sci Polym Ed. 2015;26:339–352.10.1080/09205063.2015.1007413
  • Khatun Z, Nurunnabi M, Nafiujjaman M, et al. A hyaluronic acid nanogel for photo-chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin. Nanoscale. 2015;7:10680–10689.10.1039/C5NR01075F
  • Waite JH, Tanzer ML. Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. Science. 1981;212:1038–1040.10.1126/science.212.4498.1038
  • Nurunnabi M, Khatun Z, Reeck GR, et al. Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun. 2013;49:5079–5081.10.1039/c3cc42334d
  • Nurunnabi M, Khatun Z, Nafiujjaman M, et al. Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS Appl Mater Interfaces. 2013;5:8246–8253.10.1021/am4023863
  • Lih E, Choi SG, Ahn DJ, et al. Optimal conjugation of catechol group onto hyaluronic acid in coronary stent substrate coating for the prevention of restenosis. J Tissue Eng. 2016;7:2041731416683745.
  • Zhang B, Wang Y, Zhai G. Biomedical applications of the graphene-based materials. Mater Sci Eng. 2016;61:953–964.10.1016/j.msec.2015.12.073
  • Ramachandra Kurup Sasikala A, Thomas RG, Unnithan AR, et al. Multifunctional nanocarpets for cancer theranostics: remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. Sci Rep. 2016;6:2549.10.1038/srep20543
  • Abdullah-Al-Nahain N, Lee JE, In I, et al. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm. 2013;10:3736–3744.10.1021/mp400219u
  • Wang N, Guo Y, Wang L, et al. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons. Analyst. 2014;139:2531–2537.10.1039/c4an00039 k
  • Zhong L, Yun K. Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties. Int J Nanomed. 2015;10 Spec Iss:79–92.
  • Srivastava M, Das AK, Khanra P, et al. Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine. J Mater Chem A. 2013;1:9792–9801.10.1039/c3ta11311f
  • Liu GH, Zhou TT, Liu WP, et al. Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. J Mater Chem A. 2014;2:12907–12917.10.1039/C4TA01778A
  • Aurelius J, Martner A, Brune M, et al. Remission maintenance in acute myeloid leukemia: impact of functional histamine H2 receptors expressed by leukemic cells. Haematologica. 2012;97:1904–1908.10.3324/haematol.2012.066399

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.