7,259
Views
473
CrossRef citations to date
0
Altmetric
Articles

PCL and PCL-based materials in biomedical applications

ORCID Icon, , , &
Pages 863-893 | Received 10 Apr 2017, Accepted 10 Oct 2017, Published online: 02 Nov 2017

References

  • Hoskins JN, Grayson SM. Synthesis and degradation behavior of cyclic poly(ε-caprolactone). Macromolecules. 2009;42:6406–6413.10.1021/ma9011076
  • Azimi B, Nourpanah P, Rabiee M, et al. Poly (ε-caprolactone) fiber: an overview. J Eng Fiber Fabr. 2014;9:74–90.
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer – polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217–1256.10.1016/j.progpolymsci.2010.04.002
  • Alexandru DA. Early transition metal catalyzed living radical and ring opening polymerizations for complex copolymer architectures. 56th Annu Rep Res 2011 AC7. 2011.
  • Huang Y-T, Wang W-C, Hsu C-P, et al. The ring-opening polymerization of ε-caprolactone and l-lactide using aluminum complexes bearing benzothiazole ligands as catalysts. Polym Chem. 2016;7:4367–4377.10.1039/C6PY00569A
  • Sezer UA, Aksoy EA, Hasirci V, et al. Poly(ε-caprolactone) composites containing gentamicin-loaded β-tricalcium phosphate/gelatin microspheres as bone tissue supports. J Appl Polym Sci. 2013;127:2132–2139.10.1002/app.37770
  • Sezer UA, Arslantunali D, Aksoy EA, et al. Poly(ε-caprolactone) composite scaffolds loaded with gentamicin-containing β-tricalcium phosphate/gelatin microspheres for bone tissue engineering applications. J Appl Polym Sci. 2014;131:1–11.
  • Sezer UA, Billur D, Huri G, et al. In vivo performance of poly(ε-caprolactone) constructs loaded with gentamicin releasing composite microspheres for use in bone regeneration. J Biomater Tissue Eng. 2014;4:786–795.10.1166/jbt.2014.1238
  • de la Ossa DHP, Ligresti A, Gil-Alegre ME, et al. Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: development, characterization and in vitro evaluation of their antitumoral efficacy. J Control Release. 2012;161:927–932.10.1016/j.jconrel.2012.05.003
  • Tong SY, Wang Z, Lim PN, et al. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application. Mater Sci Eng C. 2016;70:1149–1155.
  • Sabzi F, Boushehri A. Sorption phenomena of organic solvents in polymers: part II. Eur Polym J. 2005;41:2067–2087.10.1016/j.eurpolymj.2005.03.019
  • Huang Y, Xu X, Luo X, et al. Molecular weight dependence of the melting behavior of poly(ε-caprolactone). Chinese J Polym Sci. 2002;20:45–51.
  • Feng S, Chen Y, Meng C, et al. Study on the condensed state physics of poly(ε-caprolactone) nano-aggregates in aqueous dispersions. J Colloid Interface Sci. 2015;450:264–271.10.1016/j.jcis.2015.03.029
  • Schäler K, Achilles A, Bärenwald R, et al. Dynamics in crystallites of poly(ε-caprolactone) as investigated by solid-state NMR. Macromolecules. 2013;46:7818–7825.10.1021/ma401532v
  • Murphy S. Melting point depression in biodegradable polyesters [ MSc Thesis]. The University of Birmingham; 2011.
  • Herman MF. Tissue engineering. In: Herman MF, editor. Encyclopedia of polymer science and technology. Hoboken (NJ): Wiley; 2007. p. 1259.
  • Yildirimer L, Seifalian AM. Three-dimensional biomaterial degradation – material choice, design and extrinsic factor considerations. Biotechnol Adv. 2014;32:984–999.10.1016/j.biotechadv.2014.04.014
  • Díaz E, Sandonis I, Valle MB. In vitro degradation of poly(ε-caprolactone)/nHA composites. J Nanomater. 2014;2014:1–8.10.1155/2014/802435
  • Abedalwafa M, Wang F, Wang L, et al. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci. 2013;34:123–140.
  • Gleadall A, Pan J, Kruft MA, et al. Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomater. 2014;10:2223–2232.10.1016/j.actbio.2013.12.039
  • Gleadall A, Pan J, Kruft MA, et al. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer. Acta Biomater. 2014;10:2233–2240.10.1016/j.actbio.2014.01.017
  • Martins AM, Pham QP, Malafaya PB, et al. The role of lipase and alpha-amylase in the degradation of starch/poly(ε-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells. Tissue Eng Part A. 2009;15:295–305.10.1089/ten.tea.2008.0025
  • Tietz NW, Shuey DF. Lipase in serum – the elusive enzyme: an overview. Clin Chem. 1993;39:746–756.
  • Hernández AR, Contreras OC, Acevedo JC, et al. Poly(ε-caprolactone) degradation under acidic and alkaline conditions. Am J Polym Sci. 2013;3:70–75.
  • Edlund U, Albertsson A-C. Degradable polymer microspheres for controlled drug delivery. Degrad Aliphatic Polyesters. 2002;157:67–112.10.1007/3-540-45734-8
  • Migonney V. Synthetic and natural degradable polymers. In: Migonney V, editor. Biomaterials. Hoboken (NJ): John Wiley & Sons, Inc; 2014. p. 59.
  • Buchanan F. Hydrolytic degradation of polycaprolactone. In: Buchanan F, editor. Degradation rate of bioresorbable materials. Cambridge: Woodhead Publishing; 2008. p. 357–392.10.1533/9781845695033
  • Xu FJ, Wang ZH, Yang WT. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials. 2010;31:3139–3147.10.1016/j.biomaterials.2010.01.032
  • Shah LK, Amiji MM. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res. 2006;23:2638–2645.10.1007/s11095-006-9101-7
  • Paulson J. Monocryl (poliglecaprone 25) suture, undyed; 1996.
  • Maquet V, Pagnouelle C, Evrard B, et al. Active substance delivery system comprising a hydrogel matrix and microcarriers; 2006.
  • Hissink EC, Steendam R, Meyboom R, et al. Biogradable multi-block co-polymers; 2005.
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55:329–347.10.1016/S0169-409X(02)00228-4
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18.10.1016/j.colsurfb.2009.09.001
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–223.10.1016/j.yexmp.2008.12.004
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012;161:264–273.10.1016/j.jconrel.2011.08.017
  • Sinha VR, Bansal K, Kaushik R, et al. Poly-ε-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278:1–23.
  • Wang X, Wang Y, Wei K, et al. Drug distribution within poly(ε-caprolactone) microspheres and in vitro release. J Mater Process Technol. 2009;209:348–354.10.1016/j.jmatprotec.2008.02.004
  • Chandy T, Wilson RF, Rao GHR, et al. Changes in cisplatin delivery due to surface-coated poly(lactic acid)-poly(ε-caprolactone) microspheres. J Biomater Appl. 2002;16:275–291.10.1106/088532802024246
  • Murthy RS. Biodegradable polymers. In: Jain NK, editor. Controlled and novel drug delivery. New Delhi: CBS Publisher; 1997. p. 27–51.
  • Raval JP, Naik DR, Amin KA, et al. Controlled-release and antibacterial studies of doxycycline-loaded poly(ε-caprolactone) microspheres. J Saudi Chem Soc. 2014;18:566–573.10.1016/j.jscs.2011.11.004
  • Monteiro APF, Rocha CMSL, Oliveira MF, et al. Nanofibers containing tetracycline/β-cyclodextrin: physico-chemical characterization and antimicrobial evaluation. Carbohydr Polym. 2017;156:417–426.10.1016/j.carbpol.2016.09.059
  • Alex AT, Joseph A, Shavi G, et al. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv. 2016;23:2144–2153.
  • Kasinathan N, Amirthalingam M, Reddy ND, et al. In-situ implant containing PCL-curcumin nanoparticles developed using design of experiments. Drug Deliv. 2016;23:1007–1015.
  • Bakre LG, Sarvaiya JI, Agrawal YK. Synthesis, characterization, and study of drug release properties of curcumin from polycaprolactone/organomodified montmorillonite nanocomposite. J Pharm Innov. 2016;300–307.10.1007/s12247-016-9253-x
  • Hsu KH, Fang SP, Lin CL, et al. Hybrid electrospun polycaprolactone mats consisting of nanofibers and microbeads for extended release of dexamethasone. Pharm Res. 2016;33:1509–1516.10.1007/s11095-016-1894-4
  • Qi P, Bu Y, Xu J, et al. pH-responsive release of paclitaxel from hydrazone-containing biodegradable micelles. Colloid Polym Sci. 2017;295:1–12.10.1007/s00396-016-3968-6
  • Tiwari A, Prabaharan M. An amphiphilic nanocarrier based on guar gum-graft-poly(epsilon-caprolactone) for potential drug-delivery applications. J Biomater Sci Polym Ed. 2010;21:937–949.10.1163/156856209X452278
  • Elhasi S, Astaneh R, Lavasanifar A. Solubilization of an amphiphilic drug by poly(ethylene oxide)-block-poly(ester) micelles. Eur J Pharm Biopharm. 2007;65:406–413.10.1016/j.ejpb.2006.12.022
  • Koleske JV. Blends containing poly(ε-caprolactone) and related polymers. In: Paul D, Newman S, editors. Polymer blends. New York (NY): Academic Press; 1978. p. 369–389.10.1016/B978-0-12-546802-2.50018-X
  • Dong CM, Guo YZ, Qiu KY, et al. In vitro degradation and controlled release behavior of D, L-PLGA50 and PCL-b-D, L-PLGA50 copolymer microspheres. J Control Release. 2005;107:53–64.10.1016/j.jconrel.2005.05.024
  • Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;15:862–871.10.1208/s12249-014-0113-z
  • Chen S-C, Yang M-H, Chung T-W, et al. Preparation and characterization of hyaluronic acid-polycaprolactone copolymer micelles for the drug delivery of radioactive iodine-131 labeled lipiodol. Biomed Res Int. 2017;2017:1–8.
  • Davoodi P, Srinivasan MP, Wang CH. Synthesis of intracellular reduction-sensitive amphiphilic polyethyleneimine and poly(ε-caprolactone) graft copolymer for on-demand release of doxorubicin and p53 plasmid DNA. Acta Biomater. 2016;39:79–83.10.1016/j.actbio.2016.05.003
  • Leng M, Hu S, Lu A, et al. The anti-bacterial poly(caprolactone)-poly(quaternary ammonium salt) as drug delivery carriers. Appl Microbiol Biotechnol. 2016;100:3049–3059.10.1007/s00253-015-7126-8
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–651.10.1016/S0169-409X(02)00044-3
  • Chi Y, Zhu S, Wang C, et al. Glioma homing peptide-modified PEG-PCL nanoparticles for enhanced anti-glioma therapy. J Drug Target. 2016;24:224–232.10.3109/1061186X.2015.1070854
  • Ono K, Ishihara M, Ishikawa K, et al. Periodate-treated, non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) affects angiogenesis and inhibits subcutaneous induced tumour growth and metastasis to the lung. Br J Cancer. 2002;86:1803–1812.10.1038/sj.bjc.6600307
  • Yoshitomi Y, Nakanishi H, Kusano Y, et al. Inhibition of experimental lung metastases of Lewis lung carcinoma cells by chemically modified heparin with reduced anticoagulant activity. Cancer Lett. 2004;207:165–174.10.1016/j.canlet.2003.11.037
  • Garg A, Patel V, Sharma R, et al. Heparin-appended polycaprolactone core/corona nanoparticles for site specific delivery of 5-fluorouracil. Artif Cells Nanomed Biotechnol. 2016;45:1146–1155.
  • Joseph E, Saha RN. Investigations on pharmacokinetics and biodistribution of polymeric and solid lipid nanoparticulate systems of atypical antipsychotic drug: effect of material used and surface modification. Drug Dev Ind Pharm. 2017;1–12.
  • Laemthong T, Kim HH, Dunlap K, et al. Bioresponsive polymer coated drug nanorods for breast cancer treatment. Nanotechnology. 2017;28:1–10.10.1088/1361-6528/28/4/045601
  • Aishwarya S, Mahalakshmi S, Sehgal PK. Collagen-coated polycaprolactone microparticles as a controlled drug delivery system. J Microencapsul. 2008;25:298–306.10.1080/02652040801972004
  • Mukerjee A, Sinha VR, Pruthi V. Preparation and characterization of poly-ε-caprolactone particles for controlled insulin delivery. J Biomed Pharm Eng. 2007;1:40–44.
  • McGee JP, Davis SS, O’Hagan DT. Zero order release of protein from poly(D,L-lactide-co-glycolide) microparticles prepared using a modified phase separation technique. J Control Release. 1995;34:77–86.10.1016/0168-3659(94)00112-8
  • He P, Davis SS, Illum L. Chitosan microspheres prepared by spray drying. Int J Pharm. 1999;187:53–65.10.1016/S0378-5173(99)00125-8
  • Mu L, Feng SS. Fabrication, characterization and in vitro release of paclitaxel (Taxol) loaded poly(lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J Control Release. 2001;76:239–254.10.1016/S0168-3659(01)00440-0
  • Jeong JC, Lee J, Cho K. Effects of crystalline microstructure on drug release behavior of poly(ε-caprolactone) microspheres. J Control Release. 2003;92:249–258.10.1016/S0168-3659(03)00367-5
  • Arunkumar P, Indulekha S, Vijayalakshmi S, et al. Synthesis, characterizations, in vitro and in vivo evaluation of etoricoxib-loaded poly (caprolactone) microparticles-a potential intra-articular drug delivery system for the treatment of osteoarthritis. J Biomater Sci Polym Ed. 2016;27:303–316.
  • Mendes JBE, Riekes MK, de Oliveira VM, et al. PHBV/PCL microparticles for controlled release of resveratrol: physicochemical characterization, antioxidant potential, and effect on hemolysis of human erythrocytes. Sci World J. 2012;2012:1–13.10.1100/2012/542937
  • Bajpai SK, Chand N, Soni S. Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels. J Biomater Sci Polym Ed. 2015;26:947–962.10.1080/09205063.2015.1068547
  • Hinderer S, Layland SL, Schenke-Layland K. ECM and ECM-like materials – biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev. 2016;97:260–269.10.1016/j.addr.2015.11.019
  • Kim K, Luu YK, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release. 2004;98:47–56.10.1016/j.jconrel.2004.04.009
  • Jassal M, Sengupta S, Bhowmick S. Functionalization of electrospun poly(caprolactone) fibers for pH-controlled delivery of doxorubicin hydrochloride. J Biomater Sci Polym Ed. 2015;5063:1–14.
  • Uhrich KE, Cannizzaro SM, Langer RS, et al. Polymeric systems for controlled drug release. Chem Rev. 1999;99:3181–3198.10.1021/cr940351u
  • Wu XM, Branford-White CJ, Yu DG, et al. Preparation of core-shell PAN nanofibers encapsulated a-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection. Colloids Surf B Biointerfaces. 2011;82:247–252.10.1016/j.colsurfb.2010.08.049
  • Sultanova Z, Kaleli G, Kabay G, et al. Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers. Int J Pharm. 2016;505:133–138.10.1016/j.ijpharm.2016.03.032
  • Poornima B, Korrapati PS. Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydr Polym. 2017;157:1741–1749.10.1016/j.carbpol.2016.11.056
  • Sokolsky-Papkov M, Agashi K, Olaye A, et al. Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:187–206.10.1016/j.addr.2007.04.001
  • Rai B, Teoh SH, Hutmacher DW, et al. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials. 2005;26:3739–3748.10.1016/j.biomaterials.2004.09.052
  • Lee JB, Kim JE, Bae MS, et al. Development of poly(ε-caprolactone) scaffold loaded with simvastatin and beta-cyclodextrin modified hydroxyapatite inclusion complex for bone tissue engineering. Polymers (Basel). 2016;8:1–9.
  • Patel JJ, Modes JE, Flanagan CL, et al. Dual delivery of EPO and BMP2 from a novel modular poly-ɛ-caprolactone construct to increase the bone formation in prefabricated bone flaps. Tissue Eng Part C Methods. 2015;21:889–897.10.1089/ten.tec.2014.0643
  • Suárez-González D, Barnhart K, Migneco F, et al. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release. Biomaterials. 2012;33:713–721.10.1016/j.biomaterials.2011.09.095
  • Yilgor P, Hasirci N, Hasirci V. Sequential BMP-2/BMP-7 delivery from polyester nanocapsules. J Biomed Mater Res Part A. 2009;93A:528–536.
  • Yilgor P, Yilmaz G, Onal MB, et al. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects. J Tissue Eng Regen Med. 2012;7:687–696.
  • Wong BS, Teoh SH, Kang L. Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Deliv Transl Res. 2012;2:272–283.10.1007/s13346-012-0096-9
  • Prabhakar A, Lynch AP, Ahearne M. Self-assembled infrapatellar fat-pad progenitor cells on a poly-ε-caprolactone film for cartilage regeneration. Artif Organs. 2016;40:376–384.10.1111/aor.2016.40.issue-4
  • Romagnoli C, Zonefrati R, Galli G, et al. In vitro behavior of human adipose tissue-derived stem cells on poly(ε-caprolactone) film for bone tissue engineering applications. Biomed Res Int. 2015;2015:1–12.
  • Kosmala A, Fitzgerald M, Moore E, et al. Evaluation of a gelatin modified poly(ε-caprolactone) film as a scaffold for lung disease. Anal Lett. 2016;50:219–232.
  • Yu S, Gao Y, Mei X, et al. Preparation of an arg-glu-asp-val peptide density gradient on hyaluronic acid-coated poly(ε-caprolactone) film and its influence on the selective adhesion and directional migration of endothelial cells. ACS Appl Mater Interfaces. 2016;8:29280–29288.10.1021/acsami.6b09375
  • Pai B, Kulkarni AV, Jain S. Study of smart antibacterial PCL-xFe3O4 thin films using mouse NIH-3T3 fibroblast cells in vitro. J Biomed Mater Res Part B Appl Biomater. 2017;105:795–804.10.1002/jbm.b.v105.4
  • Catauro M, Bollino F, Papale F, et al. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation. Mater Sci Eng C. 2014;45:395–401.10.1016/j.msec.2014.09.007
  • Hashiwaki H, Teramoto Y, Nishio Y. Fabrication of thermoplastic ductile films of chitin butyrate/poly(ε-caprolactone) blends and their cytocompatibility. Carbohydr Polym. 2014;114:330–338.10.1016/j.carbpol.2014.08.028
  • Chen M, Zhang Y, Zhou Y, et al. Pendant small functional groups on poly(ϵ-caprolactone) substrate modulate adhesion, proliferation and differentiation of human mesenchymal stem cells. Colloids Surf B Biointerfaces. 2015;134:322–331.10.1016/j.colsurfb.2015.07.018
  • Fu N, Liao J, Lin S, et al. PCL-PEG-PCL film promotes cartilage regeneration in vivo. Cell Prolif. 2016;49:729–739.10.1111/cpr.2016.49.issue-6
  • Fuse M, Hayakawa T, Hashizume-Takizawa T, et al. Original MC3T3-E1 cell assay on collagen or fibronectin immobilized poly(lactic acid-ε-caprolactone) film. J Hard Tissue Biol. 2015;24:249–256.10.2485/jhtb.24.249
  • Yildirimer L, Seifalian AM. Sterilization-induced changes in surface topography of biodegradable POSS-PCLU and the cellular response of human dermal fibroblasts. Tissue Eng Part C. 2015;21:614–630.10.1089/ten.tec.2014.0270
  • Bhaskar P, Bosworth LA, Wong R, et al. Cell response to sterilized electrospun poly(ε-caprolactone) scaffolds to aid tendon regeneration in vivo. J Biomed Mater Res – Part A. 2016:389–397.
  • Nikpou P, Soleimani Rad J, Mohammad Nejad D, et al. Indirect coculture of stem cells with fetal chondrons using PCL electrospun nanofiber scaffolds. Artif Cells Nanomed Biotechnol. 2016;2:283–290.
  • Shirian S, Ebrahimi-Barough S, Saberi H, et al. Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly(ε-caprolactone) scaffold. Mol Neurobiol. 2016;53:5278–5287.10.1007/s12035-015-9442-5
  • Gozutok M, Baitukha A, Arefi-Khonsari F, et al. Novel thin films deposited on electrospun PCL scaffolds by atmospheric pressure plasma jet for L929 fibroblast cell cultivation. J Phys D Appl Phys. 2016;49:1–11.10.1088/0022-3727/49/47/474002
  • Campagnolo P, Gormley AJ, Chow LW, et al. Pericyte seeded dual peptide scaffold with improved endothelialization for vascular graft tissue engineering. Adv Healthc Mater. 2016;3046–3055.10.1002/adhm.201600699
  • Mahoney C, Conklin D, Waterman J, et al. Electrospun nanofibers of poly(ε-caprolactone)/depolymerized chitosan for respiratory tissue engineering applications. J Biomater Sci Polym Ed. 2016;27:611–625.10.1080/09205063.2016.1144454
  • Binulal NS, Natarajan A, Menon D, et al. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed. 2014;25:325–340.10.1080/09205063.2013.859872
  • Yao R, He J, Meng G, et al. Electrospun PCL/gelatin composite fibrous scaffolds: mechanical properties and cellular responses. J Biomater Sci Polym Ed. 2016;5063:1–15.
  • Ekaputra AK, Zhou Y, Cool SM, et al. Composite electrospun scaffolds for engineering tubular bone grafts. Tissue Engineering Part A. 2009;15:3779–3788.10.1089/ten.tea.2009.0186
  • Ekaputra AK, Prestwich GD, Cool SM, et al. The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (e{open}-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials. 2011;32:8108–8117.10.1016/j.biomaterials.2011.07.022
  • Ekaputra AK, Prestwich GD, Cool SM, et al. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules. 2008;9:2097–2103.10.1021/bm800565u
  • Chen ZCC, Ekaputra AK, Gauthaman K, et al. In vitro and in vivo analysis of co-electrospun scaffolds made of medical grade poly(epsilon-caprolactone) and porcine collagen. J Biomater Sci Polym Ed. 2008;19:693–707.10.1163/156856208784089580
  • Park H, Lim D-J, Lee S-H, et al. Nanofibrous mineralized electrospun scaffold as a substrate for bone tissue regeneration. J Biomed Nanotechnol. 2016;12:2076–2082.10.1166/jbn.2016.2306
  • Frey BM, Zeisberger SM, Hoerstrup SP. Tissue engineering and regenerative medicine – new initiatives for individual treatment offers. Transfus Med Hemotherapy. 2016;43:318–319.10.1159/000450716
  • Xu R, Taskin MB, Rubert M, et al. hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold. Sci Rep. 2015;5:1–7.10.1038/srep08480
  • Sai Nievethitha S, Subhapradha N, Saravanan D, et al. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int J Biol Macromol. 2017;98:67–74.
  • Yilgor P, Tuzlakoglu K, Reis RL, et al. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials. 2009;30:3551–3559.10.1016/j.biomaterials.2009.03.024
  • Mitsak AG, Kemppainen JM, Harris MT, et al. Effect of polycaprolactone scaffold permeability on bone regeneration in vivo. Tissue Eng Part A. 2011;17:1831–1839.10.1089/ten.tea.2010.0560
  • Kohane DS, Langer R. Polymeric biomaterials in tissue engineering. Pediatr Res. 2008;63:487–491.10.1203/01.pdr.0000305937.26105.e7
  • Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys. 2011;49:832–864.10.1002/polb.22259
  • Mondal D, Griffith M, Venkatraman SS. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater Polym Biomater. 2016;65:255–265.10.1080/00914037.2015.1103241
  • Ebersole GC, Buettmann EG, MacEwan MR, et al. Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surg Endosc Other Interv Tech. 2012;26:2717–2728.10.1007/s00464-012-2258-8
  • Croisier F, Atanasova G, Poumay Y, et al. Polysaccharide-coated PCL nanofibers for wound dressing applications. Adv Healthc Mater. 2014;3:2032–2039.10.1002/adhm.v3.12
  • Quinn TP, Oreskovic TL, McCowan CN, et al. Constitutive models for a poly(e-caprolactone) scaffold. Biomed Sci Instrum. 2004;40:249–254.
  • Rezvani Z, Venugopal JR, Urbanska AM, et al. A bird’s eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: current state-of-the-art, emerging directions and future trends. Nanomed Nanotechnol Biol Med. 2016;12:2181–2200.10.1016/j.nano.2016.05.014
  • Habraken WJEM, Wolke JGC, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:234–248.10.1016/j.addr.2007.03.011
  • Dhandayuthapani B, Yoshida Y, Maekawa T, et al. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:1–19.
  • Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: a review. Mater Sci Eng C. 2017;71:1175–1191.10.1016/j.msec.2016.10.014
  • Martínez-Vázquez FJ, Perera FH, Miranda P, et al. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 2010;6:4361–4368.10.1016/j.actbio.2010.05.024
  • Tallawi M, Rosellini E, Barbani N, et al. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface. 2015;12:569–576.10.1098/rsif.2015.0254
  • Tamboli V, Mishra GP, Mitra AK. Novel pentablock copolymer (PLA–PCL–PEG–PCL–PLA)-based nanoparticles for controlled drug delivery: effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles. Colloid Polym Sci. 2013;291:1235–1245.10.1007/s00396-012-2854-0
  • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–2543.10.1016/S0142-9612(00)00121-6
  • Savarino L, Baldini N, Greco M, et al. The performance of poly-ε-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials. 2007;28:3101–3109.10.1016/j.biomaterials.2007.03.011
  • Gönen SÖ, Erol Taygun M, Aktürk A, et al. Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box-Behnken design. Mater Sci Eng C. 2016;67:684–693.10.1016/j.msec.2016.05.065
  • Zhang H, Xia J, Pang X, et al. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Mater Sci Eng C. 2017;73:537–543.10.1016/j.msec.2016.12.116
  • Dziadek M, Menaszek E, Zagrajczuk B, et al. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: part I. Mater Sci Eng C. 2015;56:9–21.10.1016/j.msec.2015.06.020
  • Saito E, Suarez-Gonzalez D, Murphy WL, et al. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(l-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds. Adv Healthc Mater. 2015;4:621–632.10.1002/adhm.v4.4
  • Hou Q, Grijpma DW, Feijen J. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials. 2003;24:1937–1947.10.1016/S0142-9612(02)00562-8
  • Adhikari U, Rijal NP, Khanal S, et al. Magnesium incorporated chitosan based scaffolds for tissue engineering applications. Bioact Mater. 2016;1:132–139.10.1016/j.bioactmat.2016.11.003
  • Subia B, Kundu J, Kundu SC. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. In: D Eberli, editor. Tissue engineering. Vukover (Croatia): In-tech; 2010. p. 141–157.
  • Guarino V, Ambrosio L. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly ε-caprolactone-based composite scaffolds. Acta Biomater. 2008;4:1778–1787.10.1016/j.actbio.2008.05.013
  • Knutsen AR, Borkowski SL, Ebramzadeh E, et al. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices. J Mech Behav Biomed Mater. 2015;49:332–342.10.1016/j.jmbbm.2015.05.015
  • Zhang J, Zhang H, Wu L, et al. Fabrication of three dimensional polymeric scaffolds with spherical pores. J Mater Sci. 2006;41:1725–1731.10.1007/s10853-006-2873-7
  • Kiziltay A, Marcos-Fernandez A, San Roman J, et al. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells. J Tissue Eng Regen Med. 2015;9:930–942.10.1002/term.v9.8
  • Elomaa L, Kokkari A, Närhi T, et al. Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(ε-caprolactone) by stereolithography. Compos Sci Technol. 2013;74:99–106.10.1016/j.compscitech.2012.10.014
  • Declercq HA, Desmet T, Berneel EEM, et al. Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering. Acta Biomater. 2013;9:7699–7708.10.1016/j.actbio.2013.05.003
  • Park JS, Lee SJ, Jo HH, et al. Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. J Ind Eng Chem. 2017;46:175–181.10.1016/j.jiec.2016.10.028
  • Buyuksungur S, Endogan Tanir T, Buyuksungur A, et al. 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Biomater Sci. 2017;5:2144–2158.
  • Qu X, Xia P, He J, et al. Microscale electrohydrodynamic printing of biomimetic PCL/nHA composite scaffolds for bone tissue engineering. Mater Lett. 2016;185:554–557.10.1016/j.matlet.2016.09.035
  • Zehbe R, Zehbe K. Strontium doped poly-ε-caprolactone composite scaffolds made by reactive foaming. Mater Sci Eng C. 2016;67:259–266.10.1016/j.msec.2016.05.045
  • Soliman S, Pagliari S, Rinaldi A, et al. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater. 2010;6:1227–1237.10.1016/j.actbio.2009.10.051
  • Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4.10.1186/s13036-015-0001-4
  • Malikmammadov E, Tanir TE, Kiziltay A, et al. PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering. J Biomater Sci Polym Ed. 2017. DOI:10.1080/09205063.2017.1354671.
  • Ghaee A, Nourmohammadi J, Danesh P. Novel chitosan-sulfonated chitosan-polycaprolactone-calcium phosphate nanocomposite scaffold. Carbohydr Polym. 2017;157:695–703.10.1016/j.carbpol.2016.10.023
  • Hsieh A, Zahir T, Lapitsky Y, et al. Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate. Soft Matter. 2010;6:2227–2237.10.1039/b924349f
  • Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater. 2011;23:5651–5657.10.1002/adma.v23.47
  • Brown TD, Slotosch A, Thibaudeau L, et al. Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode. Biointerphases. 2012;7:1–16.
  • Thibaudeau L, Taubenberger AV, Holzapfel BM, et al. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Dis Model Mech. 2014;7:299–309.10.1242/dmm.014076
  • Visser J, Melchels FPW, Jeon JE, et al. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun. 2015;6:1–10.10.1038/ncomms7933
  • Ghosh A, Ali MA, Selvanesan L, et al. Structure-function characteristics of the biomaterials based on milk-derived proteins. Int J Biol Macromol. 2010;46:404–411.10.1016/j.ijbiomac.2010.02.011
  • Baker SC, Rohman G, Southgate J, et al. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials. 2009;30:1321–1328.10.1016/j.biomaterials.2008.11.033
  • Cooper A, Bhattarai N, Zhang M. Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration. Carbohydr Polym. 2011;85:149–156.10.1016/j.carbpol.2011.02.008
  • Hong S, Kim G. Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydr Polym. 2011;83:940–946.10.1016/j.carbpol.2010.09.002
  • Kim MH, Hong HN, Hong JP, et al. The effect of VEGF on the myogenic differentiation of adipose tissue derived stem cells within thermosensitive hydrogel matrices. Biomaterials. 2010;31:1213–1218.10.1016/j.biomaterials.2009.10.057
  • Deng Z, Guo Y, Zhao X, et al. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation. Acta Biomater. 2016;46:234–244.10.1016/j.actbio.2016.09.019
  • Loh XJ, Peh P, Liao S, et al. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J Control Release. 2010;143:175–182.10.1016/j.jconrel.2009.12.030
  • Chen H, Huang J, Yu J, et al. Electrospun chitosan-graft-poly(ε-caprolactone)/poly(ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int J Biol Macromol. 2011;48:13–19.10.1016/j.ijbiomac.2010.09.019
  • Gong C, Wu Q, Wang Y, et al. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials. 2013;34:6377–6387.10.1016/j.biomaterials.2013.05.005
  • Liao N, Rajan A, Kumar M, et al. Electrospun bioactive poly(ε-caprolactone)-cellulose acetate-dextran antibacterial composite mats for wound dressing applications. Colloids Surfaces A Physicochem Eng Asp. 2015;469:194–201.10.1016/j.colsurfa.2015.01.022
  • Oh G-W, Ko S-C, Je J-Y, et al. Fabrication, characterization and determination of biological activities of poly(ε-caprolactone)/chitosan-caffeic acid composite fibrous mat for wound dressing application. Int J Biol Macromol. 2016;93:1549–1558.10.1016/j.ijbiomac.2016.06.065
  • Li H, Williams GR, Wu J, et al. Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. Int J Pharm. 2017;517:135–147.10.1016/j.ijpharm.2016.12.008
  • Reyes-Ortega F, Cifuentes A, Rodríguez G, et al. Bioactive bilayered dressing for compromised epidermal tissue regeneration with sequential activity of complementary agents. Acta Biomater. 2015;23:103–115.10.1016/j.actbio.2015.05.012
  • Zhu Z, Li Y, Li X, et al. Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly(ε-caprolactone) nanoparticles: preparation and antitumor activity in vivo. J Control Release. 2010;142:438–446.10.1016/j.jconrel.2009.11.002
  • Li R, Li X, Xie L, et al. Preparation and evaluation of PEG – PCL nanoparticles for local tetradrine delivery. Int J Pharm. 2009;379:158–166.10.1016/j.ijpharm.2009.06.007
  • Yadav AK, Mishra P, Jain S, et al. Preparation and characterization of HA – PEG – PCL intelligent core – corona nanoparticles for delivery of doxorubicin. J Drug Target. 2008;16:464–478.10.1080/10611860802095494
  • Danafar H, Davaran S, Rostamizadeh K, et al. Biodegradable m-PEG / PCL core-shell micelles: preparation and characterization as a sustained release formulation for curcumin. Adv Pharm Bull. 2014;4:501–510.
  • Cuong N, Jiang J, Li Y, et al. Doxorubicin-loaded PEG-PCL-PEG micelle using xenograft model of nude mice: effect of multiple administration of micelle on the suppression of human breast cancer. Cancers (Basel). 2011;3:61–78.
  • Zhang J, Men K, Gu Y, et al. Preparation of core cross-linked PCL-PEG-PCL micelles for doxorubicin delivery in vitro. J Nanosci Nanotechnol. 2011;11:5054–5061.10.1166/jnn.2011.4121
  • Ma Z, Haddadi A, Molavi O, et al. Micelles of poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res Part A. 2007;86:300–310.
  • Chaturvedi TP, Srivastava R, Srivastava AK, et al. Doxycycline poly e-caprolactone nanofibers in patients with chronic periodontitis – a clinical evaluation. J Clin Diagnostic Res. 2013;7:2339–2342.
  • Chiriac S, Facca S, Diaconu M, et al. Experience of using the bioresorbable copolyester poly(DL-lactide-ε-caprolactone) nerve conduit guide NeurolacTM for nerve repair in peripheral nerve defects: report on a series of 28 lesions. J Hand Surg Eur. 2011;37:342–349.
  • de Araújo GCS, Neto BC, Botelho RHS, et al. Clinical evaluation after peripheral nerve repair with caprolactone neurotube. Hand. 2016;12:168–174.
  • Huang TW, Cheng PW, Chan YH, et al. Clinical and biomechanical analyses to select a suture material for uvulopalatopharyngeal surgery. Otolaryngol – Head Neck Surg. 2010;143:655–661.10.1016/j.otohns.2010.06.919
  • Khan G, Yadav SK, Patel RR, et al. Tinidazole functionalized homogeneous electrospun chitosan/poly (ε-caprolactone) hybrid nanofiber membrane: development, optimization and its clinical implications. Int J Biol Macromol. 2017;103:1311–1326.10.1016/j.ijbiomac.2017.05.161
  • Kraemer B, Wallwiener M, Brochhausen C, et al. A pilot study of laparoscopic adhesion prophylaxis after myomectomy with a copolymer designed for endoscopic application. J Minim Invasive Gynecol. 2010;17:222–227.10.1016/j.jmig.2009.12.018
  • Lee LW, Hsiao SH, Hung WC, et al. Clinical outcomes for teeth treated with electrospun poly(ε-caprolactone) fiber meshes/mineral trioxide aggregate direct pulp capping. J Endod. 2015;41:628–636.10.1016/j.joen.2015.01.007
  • Wu X, Wang Y, Zhu C, et al. Preclinical animal study and human clinical trial data of co-electrospun poly(L-lactide-co-caprolactone) and fibrinogen mesh for anterior pelvic floor reconstruction. Int J Nanomed. 2016;11:389–397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.