455
Views
8
CrossRef citations to date
0
Altmetric
Articles

Near-infrared light for on-demand drug delivery

&
Pages 750-761 | Received 04 Aug 2017, Accepted 26 Oct 2017, Published online: 20 Nov 2017

References

  • Bussemer T, Otto I, Bodmeier R. Pulsatile drug-delivery systems. Crit Rev Ther Drug Carrier Syst. 2001;18:433–458.
  • Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J. 2010;25:79–87.
  • Jain D, Raturi R, Jain V, et al. Recent technologies in pulsatile drug delivery systems. Biomatter. 2011;1:57–65.10.4161/biom.1.1.17717
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58:1655–1670.10.1016/j.addr.2006.09.020
  • Andresen TL, Thompson DH, Kaasgaard T. Enzyme-triggered nanomedicine: drug release strategies in cancer therapy. Mol Membr Biol. 2010;27:353–363.10.3109/09687688.2010.515950
  • Polyak B, Friedman G. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Deliv. 2009;6:53–70.10.1517/17425240802662795
  • Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery – a general review. Expert Opin Drug Deliv. 2004;1:37–56.10.1517/17425247.1.1.37
  • Linsley CS, Wu BM. Recent advances in light-responsive on-demand drug-delivery systems. Ther Deliv. 2017;8:89–107.10.4155/tde-2016-0060
  • Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7:626–634.10.1016/j.cbpa.2003.08.007
  • Tomatsu I, Peng K, Kros A. Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev. 2011;63:1257–1266.10.1016/j.addr.2011.06.009
  • Yamaguchi H, Kobayashi Y, Kobayashi R, et al. Photoswitchable gel assembly based on molecular recognition. Nat Commun. 2012;3:603.10.1038/ncomms1617
  • Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chem Commun. 2010;46:4094–4096.10.1039/c002565 h
  • Moura Valejo Coelho M, Matos TR, Apetato M. The dark side of the light: mechanisms of photocarcinogenesis. Clin Dermatol. 2016;34:563–570.10.1016/j.clindermatol.2016.05.022
  • Jalani G, Naccache R, Rosenzweig DH, et al. Photocleavable hydrogel-coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J Am Chem Soc. 2016;138:1078–1083.10.1021/jacs.5b12357
  • Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19:316–317.10.1038/86684
  • Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14:199–208.10.1038/nrc3672
  • Paiva MB, Blackwell KE, Saxton RE, et al. Palliative laser therapy for recurrent head and neck cancer: a phase II clinical study. Laryngoscope. 1998;108:1277–1283.10.1097/00005537-199809000-00003
  • Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–726.10.1038/nrc3599
  • May JP, Li S-D. Hyperthermia-induced drug targeting. Expert Opin Drug Deliv. 2013;10:511–527.10.1517/17425247.2013.758631
  • Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010;10:3318–3323.10.1021/nl100996u
  • Lim D-J, Sim M, Oh L, et al. Carbon-based drug delivery carriers for cancer therapy. Arch Pharmacal Res. 2014;37:43–52.10.1007/s12272-013-0277-1
  • Burke A, Ding X, Singh R, et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A. 2009;106:12897–12902.10.1073/pnas.0905195106
  • Shi Kam NWS, O’Connell M, Wisdom JA, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A. 2005;102:11600–11605.10.1073/pnas.0502680102
  • Wang S, Riedinger A, Li H, et al. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano. 2015;9:1788–1800.10.1021/nn506687t
  • Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, et al. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials. 2011;32:1121–1129.10.1016/j.biomaterials.2010.10.030
  • Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128:2115–2120.10.1021/ja057254a
  • Atkinson RL, Zhang M, Diagaradjane P, et al. Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med. 2010;2:55ra79.
  • Skrabalak SE, Chen J, Sun Y, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res. 2008;41:1587–1595.10.1021/ar800018v
  • Chen J, Glaus C, Laforest R, et al. Gold nanocages as photothermal transducers for cancer treatment. Small. 2010;6:811–817.10.1002/smll.v6:7
  • Hong EJ, Choi DG, Shim MS. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B. 2016;6:297–307.10.1016/j.apsb.2016.01.007
  • Mroz P, Yaroslavsky A, Kharkwal GB, et al. Cell death pathways in photodynamic therapy of cancer. Cancers (Basel). 2011;3:2516–2539.10.3390/cancers3022516
  • Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3:380–387.10.1038/nrc1071
  • Davies N, Wilson BC. Interstitial in vivo ALA-PpIX mediated metronomic photodynamic therapy (mPDT) using the CNS-1 astrocytoma with bioluminescence monitoring. Photodiagn Photodyn Ther. 2007;4:202–212.10.1016/j.pdpdt.2007.06.002
  • Lee YE, Kopelman R. Polymeric nanoparticles for photodynamic therapy. Methods Mol Biol. 2011;726:151–178.10.1007/978-1-61779-052-2
  • Shi L, Wang X, Zhao F, et al. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. Int J Nanomed. 2013;8:2669–2676.10.2147/IJN
  • Zhao L, Kim TH, Huh KM, et al. Self-assembled photosensitizer-conjugated nanoparticles for targeted photodynamic therapy. J Biomater Appl. 2013;28:434–447.10.1177/0885328212459777
  • Gangopadhyay M, Singh T, Behara KK, et al. Coumarin-containing-star-shaped 4-arm-polyethylene glycol: targeted fluorescent organic nanoparticles for dual treatment of photodynamic therapy and chemotherapy. Photochem Photobiol Sci. 2015;14:1329–1336.10.1039/C5PP00057B
  • Tsai HC, Tsai CH, Lin SY, et al. Stimulated release of photosensitizers from graft and diblock micelles for photodynamic therapy. Biomaterials. 2012;33:1827–1837.10.1016/j.biomaterials.2011.11.014
  • Yoon HY, Koo H, Choi KY, et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012;33:3980–3989.10.1016/j.biomaterials.2012.02.016
  • John JV, Chung CW, Johnson RP, et al. Dual stimuli-responsive vesicular nanospheres fabricated by lipopolymer hybrids for tumor-targeted photodynamic therapy. Biomacromolecules. 2016;17:20–31.10.1021/acs.biomac.5b01474
  • Hong G, Diao S, Antaris AL, et al. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015;115:10816–10906.10.1021/acs.chemrev.5b00008
  • Huang P, Wang S, Wang X, et al. Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy. J Biomed Nanotechnol. 2015;11:117–125.10.1166/jbn.2015.2055
  • Liu Q, Xu L, Zhang X, et al. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells. Chem Asian J. 2013;8:2370–2376.10.1002/asia.201300039
  • Li L, Nurunnabi M, Nafiujjaman M, et al. GSH-mediated photoactivity of pheophorbide a-conjugated heparin/gold nanoparticle for photodynamic therapy. J Control Release. 2013;171:241–250.10.1016/j.jconrel.2013.07.002
  • Wang J, You M, Zhu G, et al. Photosensitizer-gold nanorod composite for targeted multimodal therapy. Small. 2013;9:3678–3684.10.1002/smll.201202155
  • Jang B, Choi Y. Photosensitizer-conjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy. Theranostics. 2012;2:190–197.10.7150/thno.3478
  • Compagnin C, Baù L, Mognato M, et al. The cellular uptake of meta-tetra(hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins. Nanotechnology. 2009;20:345101.10.1088/0957-4484/20/34/345101
  • Ohulchanskyy TY, Roy I, Goswami LN, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett. 2007;7:2835–2842.10.1021/nl0714637
  • Ma X, Qu Q, Zhao Y. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy. ACS Appl Mater Interfaces. 2015;7:10671–10676.10.1021/acsami.5b03087
  • Gary-Bobo M, Hocine O, Brevet D, et al. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm. 2012;423:509–515.10.1016/j.ijpharm.2011.11.045
  • Martynenko IV, Kuznetsova VA, Orlova АO, et al. Chlorin e6-ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy. Nanotechnology. 2015;26:055102.10.1088/0957-4484/26/5/055102
  • Li L, Zhao JF, Won N, et al. Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer. Nanoscale Res Lett. 2012;7:386.10.1186/1556-276X-7-386
  • Hsu CY, Chen CW, Yu HP, et al. Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy. Biomaterials. 2013;34:1204–1212.10.1016/j.biomaterials.2012.08.044
  • Yang X, Liu Z, Li Z, et al. Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy. Chem Eur J. 2013;19:10388–10394.10.1002/chem.201204624
  • Kannan K. Compatibility studies of camptothecin with various pharmaceutical excipients used in the development of nanoparticle formulation. Int J Pharm Pharm Sci. 2013;5(suppl 4):315–321.
  • Bikram M, Gobin AM, Whitmire RE, et al. Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery. J Control Release. 2007;123:219–227.10.1016/j.jconrel.2007.08.013
  • Yoshida R, Sakai K, Okano T, et al. Modulating the phase transition temperature and thermosensitivity in N-isopropylacrylamide copolymer gels. J Biomater Sci Polym Ed. 1994;6:585–598.
  • Barhoumi A, Wang W, Zurakowski D, et al. Photothermally targeted thermosensitive polymer-masked nanoparticles. Nano Lett. 2014;14:3697–3701.10.1021/nl403733z
  • Wu G, Mikhailovsky A, Khant HA, et al. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc. 2008;130:8175–8177.10.1021/ja802656d
  • Troutman TS, Leung SJ, Romanowski M. Light-induced content release from plasmon resonant liposomes. Adv Mater. 2009;21:2334–2338.10.1002/adma.v21:22
  • Liu J, Bu W, Pan L, et al. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew Chem Int Ed. 2013;52:4375–4379.10.1002/anie.201300183
  • Fedoryshin LL, Tavares AJ, Petryayeva E, et al. Near-infrared-triggered anticancer drug release from upconverting nanoparticles. ACS Appl Mater Interfaces. 2014;6:13600–13606.10.1021/am503039f
  • Wang TD, Van Dam J. Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clin Gastroenterol Hepatol. 2004;2:744–753.10.1016/S1542-3565(04)00345-3
  • Mallidi S, Anbil S, Bulin AL, et al. Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics. 2016;6:2458–2487.10.7150/thno.16183
  • Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1:13–28.10.1016/j.jare.2010.02.002
  • Kwon HJ, Byeon Y, Jeon HN, et al. Gold cluster-labeled thermosensitive liposmes enhance triggered drug release in the tumor microenvironment by a photothermal effect. J Control Release. 2015;216:132–139.10.1016/j.jconrel.2015.08.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.