403
Views
29
CrossRef citations to date
0
Altmetric
Articles

Glutathione conjugated polyethylenimine on the surface of Fe3O4 magnetic nanoparticles as a theranostic agent for targeted and controlled curcumin delivery

, , , , , , , , , , , , , , , & show all
Pages 1109-1125 | Received 14 Oct 2017, Accepted 10 Jan 2018, Published online: 16 Feb 2018

References

  • Cancer IAfRo. All cancers (excluding non-melanoma skin cancer) estimated incidence, mortality and prevalence worldwide in 2012. Available from: http://globocan.iarc.fr
  • Kumar P. Brain-Tumor-Detection-Using-Digital-Image-Processing. Int Res J Eng Technol. 2016;3(6):1320–1323.
  • Misra A, Ganesh S, Shahiwala A, et al. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6(2):252–273.
  • Cheng Y, Morshed RA, Auffinger B, et al. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Delivery Rev. 2014;66:42–57.10.1016/j.addr.2013.09.006
  • Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29:487–496.10.1016/j.biomaterials.2007.08.050
  • Day ES, Thompson PA, Zhang L, et al. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. J Neurooncol. 2011;104:55–63.10.1007/s11060-010-0470-8
  • Ding H, Inoue S, Ljubimov AV, et al. Inhibition of brain tumor growth by intravenous poly (beta-L-malic acid) nanobioconjugate with Ph-dependent drug release. Proc Nat Acad Sci. 2010;107:18143–18148.10.1073/pnas.1003919107
  • Jordan A, Scholz R, Maier-Hauff  K, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol. 2006;78:7–14.10.1007/s11060-005-9059-z
  • Noble CO, Krauze MT, Drummond DC, et al. Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Can Res. 2006;66:2801–2806.10.1158/0008-5472.CAN-05-3535
  • Xin HL, Sha XY, Jiang XY, et al. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33:8167–8176.10.1016/j.biomaterials.2012.07.046
  • Rozhkova EA, Ulasov I, Lai B, et al. A high performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett. 2009;9:3337–3342.10.1021/nl901610f
  • Liu HL, Hua MY, Yang HW, et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Nat Acad Sci. 2010;107:15205–15210.10.1073/pnas.1003388107
  • Chertok B, David AE, Yang VC. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials. 2010;31:6317–6324.10.1016/j.biomaterials.2010.04.043
  • Ghamkhari A, Massoumi B, Salehi R. A new style for synthesis of thermo-responsive Fe3O4/poly (methylmethacrylate-b-N-isopropylacrylamide-b-acrylic acid) magnetic composite nanosphere and theranostic applications. J Biomater Sci Polym Ed. 2017;28:1985–2005.10.1080/09205063.2017.1364459
  • Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103:317–324.10.1007/s11060-010-0389-0
  • Sun C, Fang C, Stephen Z, et al. Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine. 2008;3:495–505.10.2217/17435889.3.4.495
  • Tomanek B, Iqbal U, Blasiak B, et al. Evaluation of brain tumor vessels specific contrast agents for glioblastoma imaging. Neuro Oncol. 2012;14:53–63.10.1093/neuonc/nor183
  • Kong SD, Lee J, Ramachandran S, et al. Magnetic targeting of nanoparticles across the intact blood–brain barrier. J Controlled Release. 2012;164:49–57.10.1016/j.jconrel.2012.09.021
  • Voltairas PA, Fotiadis DI, Michalis LK. Hydrodynamics of magnetic drug targeting. J Biomech. 2002;35:813–821.10.1016/S0021-9290(02)00034-9
  • Park JH, Saravanakumar G, Kim K, et al. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Delivery Rev. 2010;62:28–41.10.1016/j.addr.2009.10.003
  • Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Nat Acad Sci. 1995;92:7297–7301.10.1073/pnas.92.16.7297
  • Li J, Meng Q, Lei Y, et al. Benzamide analogue-conjugated polyethylenimine for brain-targeting and gene delivery. J Drug Target. 2011;19(9):814–820.10.3109/1061186X.2011.572975
  • Abbasi S, Paul A, Prakash S. Investigation of siRNA loaded polyethylenimine-coated human serum albumin nanoparticle complexes for the treatment of breast cancer. Cell Biochem Biophys. 2011;61:277–287.10.1007/s12013-011-9201-9
  • Dong DW, Xiang B, Gao W, et al. pH-Responsive complexes using pre functionalized polymers for synchronous delivery of doxorubicin and sirna to cancer cells. Biomaterials. 2013;34:4849–4859.10.1016/j.biomaterials.2013.03.018
  • Anitha A, Maya S, Deepa N, et al. Curcumin-loaded N, O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J Biomater Sci Polym Ed. 2012;23:1381–1400.
  • Sharma RA, Gescher AJ, Steward WP. Curcumin: The story so far. Eur J Cancer. 2005;41:1955–1968.10.1016/j.ejca.2005.05.009
  • Sa G, Das T. Anticancer effects of curcumin: cycle of life and death. Cell Div. 2008;3:14.10.1186/1747-1028-3-14
  • Yoysungnoen P, Wirachwong P, Bhattarakosol P, et al. Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-iimplanted nude mice. Clin Hemorheol Microcirc. 2006;34:109–115.
  • Zintchenko A, Philipp A, Dehshahri A. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem. 2008;19:1448–1455.10.1021/bc800065f
  • Khaw AK, Hande MP, Kalthur G. Curcumin inhibits telomerase and induces telomere shortening and apoptosis in brain tumour cells. J. Cell. Biochem. 2013;114:1257–1270.10.1002/jcb.24466
  • Daryasari M, Akhgar M, Mamashli F, et al. Chitosan-folate coated mesoporous silica nanoparticles as a smart and pH-sensitive system for curcumin delivery. RSC Adv. 2016;6:105578–105588.10.1039/C6RA23182A
  • Ghorbani M, Bigdeli B, Jalili-baleh L, et al. Curcumin-lipoic acid conjugate as a promising anticancer agent on the surface of gold iron oxide nanocomposites: a pH-sensitive targeted drug delivery system for brain cancer theranostics. Eur J Pharm Sci. 2018;114:175–188.10.1016/j.ejps.2017.12.008
  • Yoshida T, Lai TC, Kwon GS, et al. pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Delivery. 2013;10(11):1497–1513.10.1517/17425247.2013.821978
  • Mu B, Liu P, Dong Y, et al. Superparamagnetic pH-sensitive multilayer hybrid hollow microspheres for targeted controlled release. J Polym Sci Part A. 2010;48:3135–3144.10.1002/pola.v48:14
  • Akrami M, Khoobi M, Khalilvand-Sedagheh M, et al. Evaluation of multilayer coated magnetic nanoparticles as biocompatible curcumin delivery platforms for breast cancer treatment. RSC Adv. 2015;5:88096–88107.10.1039/C5RA13838H
  • Yallapu MM, Othman SF, Curtis ET, et al. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomed. 2012;7:1761–1779.
  • Cai H, An X, Cui J, et al. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces. 2013;5:1722–1731.10.1021/am302883 m
  • Li J, Zheng L, Cai H, et al. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials. 2013;34:8382–8392.10.1016/j.biomaterials.2013.07.070
  • Waynforth HB, Flecknell PA. Experimental and surgical techniques in the rat. 2nd ed. London: Academic Press; 1992.
  • Monrás JP, Díaz V, Bravo D, et al. Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli. PLoS ONE. 2012;7:e48657.10.1371/journal.pone.0048657
  • Mohan PR, Sreelakshmi G, Muraleedharan CV, et al. Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc. 2012;62:77–84.10.1016/j.vibspec.2012.05.002
  • Lee WH, Loo CY, Young PM, et al. Curcumin nanoparticles attenuate production of pro-inflammatory markers in lipopolysaccharide-induced macrophages. Pharm Res. 2016;33:315–327.10.1007/s11095-015-1789-9
  • Shubayev VI, Pisanic TR, II, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Delivery Rev. 2009;61(6):467–477.10.1016/j.addr.2009.03.007
  • Lou L, Yu K, Zhang Zh, et al. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labeling. Nanoscale. 2011;3:2315–2323.10.1039/c1nr10066a
  • Shubayev VI, Pisanic TR, II, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Delivery Rev. 2009;61(6):467–477.10.1016/j.addr.2009.03.007
  • Yallapu MM, Jaggi M, Chauhan SC. Beta-cyclodextrin-curcumin selfassembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B. 2010;79(1):113–125.10.1016/j.colsurfb.2010.03.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.