360
Views
11
CrossRef citations to date
0
Altmetric
Articles

Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds

, , , , , & show all
Pages 716-729 | Received 11 Dec 2017, Accepted 06 Feb 2018, Published online: 13 Feb 2018

References

  • Laurencin CT, Ambrosio A, Borden M, et al. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999;1(1):19–46.10.1146/annurev.bioeng.1.1.19
  • Stevenson S. Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin Orthop Relat Res. 1998;355:S239–S246.10.1097/00003086-199810001-00024
  • Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine. 1995;20(9):1055–1060.10.1097/00007632-199505000-00012
  • Yaszemski MJ, Payne RG, Hayes WC, et al. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials. 1996;17(2):175–185.10.1016/0142-9612(96)85762-0
  • McAuliffe JA. Bone graft substitutes. J Hand Ther. 2003;16(2):180–187.10.1016/S0894-1130(03)80013-3
  • Kneser U, Schaefer D, Polykandriotis E, et al. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med. 2006;10(1):7–19.10.1111/jcmm.2006.10.issue-1
  • Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32(3):477–486.10.1023/B:ABME.0000017544.36001.8e
  • Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86(7):1541–1558.10.2106/00004623-200407000-00029
  • Meinel L, Illi OE, Zapf J, et al. Stabilizing insulin-like growth factor-I in poly (D, L-lactide-co-glycolide) microspheres. J Controlled Release. 2001;70(1):193–202.10.1016/S0168-3659(00)00352-7
  • Meinel L, Zoidis E, Zapf J, et al. Localized insulin-like growth factor I delivery to enhance new bone formation. Bone. 2003;33(4):660–672.10.1016/S8756-3282(03)00207-2
  • Luginbuehl V, Wenk E, Koch A, et al. Insulin-like growth factor I – releasing alginate-tricalciumphosphate composites for bone regeneration. Pharm Res. 2005;22(6):940–950.10.1007/s11095-005-4589-9
  • Ristiniemi J, Flinkkila T, Hyvonen P, et al. RhBMP-7 accelerates the healing in distal tibial fractures treated by external fixation. J Bone Joint Surg Br. 2007;89(2):265–272.10.1302/0301-620X.89B2.18230
  • Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347–2359.10.1016/S0142-9612(00)00102-2
  • Lin AS, Barrows TH, Cartmell SH, et al. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials. 2003;24(3):481–489.10.1016/S0142-9612(02)00361-7
  • Li S, de Wijn JR, Li J, et al. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 2003;9(3):535–548.10.1089/107632703322066714
  • Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001;83:S151–8.
  • Kanakaris N, Lasanianos N, Calori G, et al. Application of bone morphogenetic proteins to femoral non-unions: a 4-year multicentre experience. Injury. 2009;40:S54–S61.10.1016/S0020-1383(09)70013-0
  • Schmitt JM, Hwang K, Winn SR, et al. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Res. 1999;17(2):269–278.10.1002/(ISSN)1554-527X
  • Boyne PJ, Marx RE, Nevins M, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent. 1997;17(1):11–25.
  • Takaoka K, Koezuka M, Nakahara H. Telopeptide-depleted bovine skin collagen as a carrier for bone morphogenetic protein. J Orthop Res. 1991;9(6):902–907.10.1002/(ISSN)1554-527X
  • Takaoka K, Nakahara H, Yoshikawa H, et al. Ectopic bone induction on and in porous hydroxyapatite combined with collagen and bone morphogenetic protein. Clin Orthop Relat Res. 1988;234:250–254.
  • Hollinger JO, Leong K. Poly (α-hydroxy acids): carriers for bone morphogenetic proteins. Biomaterials. 1996;17(2):187–194.10.1016/0142-9612(96)85763-2
  • Nakashima M. Induction of dentine in amputated pulp of dogs by recombinant human bone morphogenetic proteins-2 and-4 with collagen matrix. Arch Oral Biol. 1994;39(12):1085–1089.
  • Schimandle JH, Boden SD, Hutton WC. Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine. 1995;20(12):1326–1337.10.1097/00007632-199520120-00002
  • Kurilof DB, Fayad JN. Tracheal autograft prefabrication using microfibrillar collagen and bone morphogenetic protein. Arch Otolaryngol Head Neck Surg. 1996;122(12):1385–1389.10.1001/archotol.1996.01890240091020
  • Delustro F, Dasch J, Keefe J, et al. Immune responses to allogeneic and xenogeneic implants of collagen and collagen derivatives. Clin Orthop Relat Res. 1990;260:263–279.
  • Butler D. Last chance to stop and think on risks of xenotransplants. Nature. 1998;391(6665):320.
  • Bach FH, Fishman JA, Daniels N, et al. Uncertainty in xenotransplantation: individual benefit vs. collective risk. Nat Med. 1998;4(2):141–144.10.1038/nm0298-141
  • Patel ZS, Young S, Tabata Y, et al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone. 2008;43(5):931–940.10.1016/j.bone.2008.06.019
  • Mohd AAMN, Maryam MR, Zainal AA. Synthesis and characterization of β-Tricalcium phosphate ceramic via sol-gel method. J Nucl Relat Technol. 2009;6(1):195–202.
  • Lee JH, Ryu MY, Baek H, et al. Effects of porous beta-tricalcium phosphate-based ceramics used as an E. coli-derived rhBMP-2 carrier for bone regeneration. J Mater Sci Mater Med. 2013;24(9):2117–2127.10.1007/s10856-013-4967-5
  • Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone. 2010;46(2):386–395.10.1016/j.bone.2009.09.031
  • Weinand C, Pomerantseva I, Neville CM, et al. Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone. Bone. 2006;38(4):555–563.10.1016/j.bone.2005.10.016
  • Park S, Kim SH, Won K, et al. Wood mimetic hydrogel beads for enzyme immobilization. Carbohydr Polym. 2015;115:223–229.
  • Lou T, Wang X, Song G, et al. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Int J Biol Macromol. 2014;69:464–470.10.1016/j.ijbiomac.2014.06.004
  • Yang Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials. 2007;28(9):1643–1652.10.1016/j.biomaterials.2006.12.004
  • Tang X, Ding F, Yang Y, et al. Evaluation on in vitro biocompatibility of silk fibroin-based biomaterials with primarily cultured hippocampal neurons. J Biomed Mater Res A. 2009;91(1):166–174.10.1002/jbm.a.v91a:1
  • Mobini S, Solati-Hashjin M, Peirovi H, et al. Bioactivity and biocompatibility studies on silk-based scaffold for bone tissue engineering. J Med Biol Eng. 2013;33(2):207–214.10.5405/jmbe.1065
  • Chung E, Ju HW, Park HJ, et al. Three-layered scaffolds for artificial esophagus using poly (ɛ-caprolactone) nanofibers and silk fibroin: An experimental study in a rat model. J Biomed Mater Res A. 2015;103(6):2057–2065.10.1002/jbm.a.v103.6
  • Ju HW, Sheikh FA, Moon BM, et al. Fabrication of poly (lactic-co-glycolic acid) scaffolds containing silk fibroin scaffolds for tissue engineering applications. J Biomed Mater Res A. 2014;102(8):2713–2724.10.1002/jbm.a.v102.8
  • Kim C, Kim J, Kim J, et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials. 2005;26(15):2501–2507.10.1016/j.biomaterials.2004.07.015
  • Howell TH, Fiorellini J, Jones A, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge device for local alveolar ridge preservation or augmentation. J Periodontics Restorative Dent. 1997;17(2):124–139.
  • Groenveld H, van den Bergh J, Holzmann P, et al. Histological observations of a bilateral maxillary sinus floor elevation 6 and 12 months after grafting with osteogenic protein-1 device. J Clin Periodontol. 1999;26(12):841–846.10.1034/j.1600-051X.1997.00841.x
  • Hunt DR, Jovanovic SA, Wikesjö UM, et al. Hyaluronan supports recombinant human bone morphogenetic protein-2 induced bone reconstruction of advanced alveolar ridge defects in dogs. J Periodontol. 2001;72(5):651–658.10.1902/jop.2001.72.5.651
  • Yamamoto M, Takahashi Y, Tabata Y. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials. 2003;24(24):4375–4383.10.1016/S0142-9612(03)00337-5
  • Uludag H, D’Augusta D, Golden J, et al. Implantation of recombinant human bone morphogenetic proteins with biomaterial carriers: a correlation between protein pharmacokinetics and osteoinduction in the rat ectopic model. J Biomed Mater Res. 2000;50(2):227–238.10.1002/(ISSN)1097-4636
  • Liu Y, De Groot K, Hunziker EB. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone. 2005;36(5):745–757.10.1016/j.bone.2005.02.005
  • Liu Y, Hunziker EB, Layrolle P, et al. Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity. Tissue Eng. 2004;10(1–2):101–108.10.1089/107632704322791745
  • Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259–278.
  • Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–636.10.1126/science.6093253
  • Kondo N, Ogose A, Tokunaga K, et al. Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle. Biomaterials. 2005;26(28):5600–5608.10.1016/j.biomaterials.2005.02.026
  • Oonishi H, Kushitani S, Iwaki H, et al. Comparative bone formation in several kinds of bioceramic granules. Bioceramics. 1995;8:137–144.
  • Lou T, Wang X, Song G, et al. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2015;26:34.10.1007/s10856-014-5366-2
  • Kim SH, Kim SH, Jung Y. Bi-layered PLCL/(PLGA/β-TCP) composite scaffold for osteochondral tissue engineering. J Bioact Compat Polym. 2015;30(2):178–187.10.1177/0883911514566015
  • Zong C, Qian X, Tang Z, et al. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly (lactic acid) scaffolds. J Biomed Nanotechnol. 2014;10(6):1091–1104.10.1166/jbn.2014.1696
  • Jin H, Kim D, Kim T, et al. In vivo evaluation of porous hydroxyapatite/chitosan–alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2012;51(5):1079–1085.10.1016/j.ijbiomac.2012.08.027
  • Park HJ, Min KD, Lee MC, et al. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. J Biomed Mater Res A. 2016;104(7):1779–1787.10.1002/jbm.a.35711
  • Meinel L, Fajardo R, Hofmann S, et al. Silk implants for the healing of critical size bone defects. Bone. 2005;37(5):688–698.10.1016/j.bone.2005.06.010
  • Yannas I. Tissue regeneration by use of collagen-glycosaminoglycan copolymers. Clin Mater. 1992;9(3–4):179–187.10.1016/0267-6605(92)90098-E
  • Hulbert S, Young F, Mathews R, et al. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res. 1970;4(3):433–456.10.1002/(ISSN)1097-4636
  • Klawitter J, Bagwell J, Weinstein A, et al. An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res. 1976;10(2):311–323.10.1002/(ISSN)1097-4636
  • Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31(3):461–466.10.1016/j.biomaterials.2009.09.063
  • Zegzula HD, Buck DC, Brekke J, et al. Bone formation with use of rhBMP-2 (recombinant human bone morphogenetic protein-2). J Bone Joint Surg. 1997;79(12):1778–1790.10.2106/00004623-199712000-00003
  • Wheeler DL, Chamberland DL, Schmitt JM, et al. Radiomorphometry and biomechanical assessment of recombinant human bone morphogenetic protein-2 and polymer in rabbit radius ostectomy model. J Biomed Mater Res. 1998;43(4):365–373.
  • Holliner JO, Schmitt JM, Buck DC, et al. Recombinant human bone morphogenetic protein-2 and collagen for bone regeneration. J Biomed Mater Res. 1998;43(4):356–364.
  • Miyamoto S, Takaoka K, Ono K. Bone induction in monkeys by bone morphogenetic protein. A trans-filter technique. J Bone Joint Surg Br. 1993;75(1):107–110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.