728
Views
37
CrossRef citations to date
0
Altmetric
Articles

Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant

, , , , ORCID Icon, , & show all
Pages 1595-1611 | Received 01 Apr 2018, Accepted 14 May 2018, Published online: 23 May 2018

References

  • Gerbino G, Zavattero E, Zenga F, et al. Primary and secondary reconstruction of complex craniofacial defects using polyetheretherketone custom-made implants. J Craniomaxillofac Surg. 2015;43:135613–135663.
  • Zaidi SMJ, Mikhailenko SD, Robertson GP, et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Membr. Sci. 2000;173:17–34.10.1016/S0376-7388(00)00345-8
  • Fraioli R, Rechenmacher F, Neubauer S, et al. Mimicking bone extracellular matrix: Integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium. Colloids Surf., B. 2015;128:191–200.10.1016/j.colsurfb.2014.12.057
  • Salvagni E, Berguig G, Engel E, et al. A bioactive elastin-like recombinamer reduces unspecific protein adsorption and enhances cell response on titanium surfaces. Colloids Surf., B. 2014;114:225–233.10.1016/j.colsurfb.2013.10.008
  • Ouyang L, Deng Y, Lei Y, et al. Graphene-oxide-decoraged microporous polyetheretherketone with superior antibacterial capability and in vitro osteogenesis for orthopedic implant. Macromol. Biosci. 2018;1800036.
  • Deng Y, Yang Y, Ma Y, et al. Nano-hydroxyapatite reinforced polyphenylene sulfide biocomposite with superior cytocompatibility and in vivo osteogenesis as a novel orthopedic implant. RSC Adv. 2017;37:599–573.
  • Tessier P. Autogenous bone grafts taken from the calvarium for facial and cranial applications. Clin Plast Surg. 1982;9:531–538.
  • Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–4869.10.1016/j.biomaterials.2007.07.013
  • Zhao Y, Wong HM, Wang W, et al. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials. 2013;34:9264–9277.10.1016/j.biomaterials.2013.08.071
  • Toth JM, Wang M, Estes BT, et al. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials. 2006;27:324–334.10.1016/j.biomaterials.2005.07.011
  • Wang H, Lu T, Meng F, et al. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation. Colloids Surf., B. 2014;117:89–97.10.1016/j.colsurfb.2014.02.019
  • Khonsari RH, Berthier P, Rouillon T, et al. Severe infectious complications after PEEK-derived implant placement: Report of three cases. J. Oral. Pathol. Med. 2014;26:477–482.
  • Ghosh S, Dunnigan R, Gupta S. Synthesis and tribological behavior of novel wear-resistant PEEK-Ti3SiC2 composites. J. Eng. Tribology. 2017;231:422–428.
  • Monich PR, Berti FV, Porto LM, et al. Physicochemical and biological assessment of PEEK composites embedding natural amorphous silica fibers for biomedical applications. Mater Sci Eng C. 2017;79:354–362.10.1016/j.msec.2017.05.031
  • Regis M, Bellare A, Pascolini T, et al. Characterization of thermally annealed PEEK and CFR-PEEK composites: Structure-properties relationships. Polym. Degrad. Stab. 2017;136:121–130.10.1016/j.polymdegradstab.2016.12.005
  • Pan YS, Chen Y, Shen QQ, et al. Effect of notch sensitivity on the mechanical properties of HA/PEEK functional gradient biocomposites. J. Polym. Eng. 2016;36:933–941.
  • Wang L, He S, Wu X, et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties. Biomaterials. 2014;35:6758–6775.10.1016/j.biomaterials.2014.04.085
  • Waser-Althaus J, Salamon A, Waser M, et al. Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone. J Mater Sci Mater Med. 2014;25:515–525.10.1007/s10856-013-5072-5
  • Wang S, Deng Y, Yang L, et al. Enhanced antibacterial property and osteo-differentiation activity on plasma treated porous polyetheretherketone with hierarchical micro/nano-topography. J. Biomater. Sci. Polym. Ed. 2018;29:520–542.10.1080/09205063.2018.1425181
  • Almasi D, Izman S, Assadian M, et al. Crystalline ha coating on peek via chemical deposition. Appl. Surf. Sci.. 2014;314:1034–1040.10.1016/j.apsusc.2014.06.074
  • Becker M, Lorenz S, Strand D, et al. Covalent grafting of the RGD-peptide onto polyetheretherketone surfaces via schiff base formation. Sci. World J. 2013.
  • Du YW, Zhang LN, Ye X, et al. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK). Front Mater Sci. 2015;9:38–50.10.1007/s11706-015-0276-x
  • Khoury J, Maxwell M, Cherian RE, et al. Enhanced bioactivity and osseointegration of PEEK with accelerated neutral atom beam technology. J Biomed Mater Res B Appl Biomater. 2017;105:531–543.10.1002/jbm.b.v105.3
  • Rockwood DN, Preda RC, Yucel T, et al. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6:161216–161231.
  • Kim HJ, Kim UJ, Kim HS, et al. Bone tissue engineering with premineralized silk scaffolds. Bone. 2008;42:1226–1234.10.1016/j.bone.2008.02.007
  • Vepari C, Kaplan DL. Silk as a biomaterial. Prog. Polym. Sci. 2007;32:991–1007.10.1016/j.progpolymsci.2007.05.013
  • Karageorgiou V, Meinel L, Hofmann S, et al. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res.. 2004;71A:528–537.10.1002/(ISSN)1097-4636
  • Sun J, Deng Y, Li J, et al. A New Graphene Derivative: Hydroxylated Graphene with Excellent Biocompatibility. ACS Appl. Mater. Interfaces. 2016;8:10226–10233.10.1021/acsami.6b02032
  • Kim HK, Kim JH, Park DS, et al. Osteogenesis induced by a bone forming peptide from the prodomain region of BMP-7. Biomaterials. 2012;33:7057–7063.10.1016/j.biomaterials.2012.06.036
  • Deng Y, Wei S, Yang L, et al. A novel hydrogel surface grafted with dual functional peptides for sustaining long-term self-renewal of human induced pluripotent stem cells and manipulating their osteoblastic maturation. Adv. Func. Mater. 2018;28:1705546.10.1002/adfm.v28.11
  • Luo Z, Yang Y, Deng Y, et al. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering. Colloids Surf., B. 2016;143:243–251.10.1016/j.colsurfb.2016.03.047
  • Deng Y, Yang Y, Wei S. Peptide-decorated nanofibrous niche augments in vitro directed osteogenic conversion of human pluripotent stem cells. Biomacromol. 2017;18:587–598.10.1021/acs.biomac.6b01748
  • Ouyang L, Zhao Y, Jin G, et al. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK. Biomaterials. 2016;83:115–126.10.1016/j.biomaterials.2016.01.017
  • Daoust D, Devaux J, Godard P. Part 1. Qualitative comparison between polymer and monomer model compound sulfonation. Polym. Int. 2001;50:917–924.10.1002/(ISSN)1097-0126
  • Zhu LP, Jiang JH, Zhu BK, et al. Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer. Colloids Surf., B. 2011;86:111–118.10.1016/j.colsurfb.2011.03.027
  • Lu T, Wen J, Qian S, et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus. Biomaterials. 2015;51:173–183.10.1016/j.biomaterials.2015.02.018
  • Zhao Y, Wong HM, Lui SC, et al. Plasma Surface Functionalized Polyetheretherketone for Enhanced Osseo-Integration at Bone-Implant Interface. ACS Appl. Mater. Interfaces. 2016;8:3901–3911.10.1021/acsami.5b10881
  • Zhang W, Wang G, Liu Y, et al. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials. 2013;34:3184–3195.10.1016/j.biomaterials.2013.01.008
  • Ku SH, Ryu J, Hong SK, et al. General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials. 2010;31:2535–2541.10.1016/j.biomaterials.2009.12.020
  • Liu J, Liu T, Pan J, et al. Advances in multicompartment mesoporous silica micro/nanoparticles for theranostic applications. Annu. Rev. Chem. Biomol. 2018;9:17.1–17.23.
  • Yang T, Wei L, Jing L, et al. Dumbbell-shaped bi-component mesoporous janus solid nanoparticles for biphasic interface catalysis. Angew. Chem. Int. Ed. 2017;56:8459–8463.10.1002/anie.201701640
  • Tian H, Liu H, Yang T, et al. Fabrication of core–shell, yolk–shell and hollow Fe3O4 @carbon microboxes for high-performance lithium-ion batteries. Mater Chem Front. 2017;1:823–830.10.1039/C7QM00059F
  • Renò F, D'Angelo D, Gottardi G, et al. Atmospheric pressure plasma surface modification of poly(D,L-lactic acid) increases fibroblast, osteoblast and keratinocyte adhesion and proliferation. Plasma Processes Polym. 2012;9:491–502.10.1002/ppap.v9.5
  • Lee SJ, Jo HH, Kwon SK, et al. A novel mussel-inspired 3D printed-scaffolds immobilized with bone forming peptide-1 for bone tissue engineering applications: Preparation, characterization and evaluation of its properties. Macromol. Res.. 2016;24:305–308.10.1007/s13233-016-4049-x
  • Lee YJ, Lee J-H, Cho H-J, et al. Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Biomaterials. 2013;34:5059–5069.10.1016/j.biomaterials.2013.03.051
  • Zhou R, Wei D, Cao J, et al. Synergistic effects of surface chemistry and topologic structure from modified microarc oxidation coatings on Ti implants for improving osseointegration. ACS Appl. Mater. Interfaces.. 2015;7:8932–8941.10.1021/acsami.5b02226
  • Pujaripalmer M, Pujaripalmer S, Xi L, et al. Pyrophosphate stimulates differentiation, matrix gene expression and alkaline phosphatase activity in osteoblasts. PLoS One. 2016; 11:e0163530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.