255
Views
9
CrossRef citations to date
0
Altmetric
Articles

A novel gold nanorods-based pH-sensitive thiol-ended triblock copolymer for chemo-photothermo therapy of cancer cells

, ORCID Icon &
Pages 12-33 | Received 10 Jun 2018, Accepted 21 Jul 2018, Published online: 11 Jan 2019

References

  • Tang H, Shen S, Guo J, et al. Gold nanorods@mSiO2 with a smart polymer shell responsive to heat/near-infrared light for chemo-photothermal therapy. J Mater Chem. 2012;22:16095. DOI:10.1039/c2jm32599c
  • Abbasian M, Mahmoodzadeh F, Salehi R, et al. Chemo-photothermal therapy of cancer cells using gold nanorod-cored stimuli-responsive triblock copolymer. New J. Chem. 2017;41:12777–12788. DOI:10.1039/C7NJ02504A
  • Shen S, Tang H, Zhang X, et al. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials. 2013;34:3150–3158. DOI:10.1016/j.biomaterials.2013.01.051
  • Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters. 2008;269:57–66. DOI:10.1016/j.canlet.2008.04.026
  • Zhou F, Wu S, Wu B, et al. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small. 2011;7:2727–2735. DOI:10.1002/smll.201100669
  • Su S, Wang J, Wei J, et al. Efficient photothermal therapy of brain cancer through porphyrin functionalized graphene oxide. New J Chem. 2015;39:5743–5749. DOI:10.1039/C5NJ00122F
  • Zhang H, Wu H, Wang J, et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials. 2015;42:66–77. DOI:10.1016/j.biomaterials.2014.11.055
  • Zhang W, Guo Z, Huang D, et al. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials. 2011;32:8555–8561. DOI:10.1016/j.biomaterials.2011.07.071
  • Xue W, Zhou J, Gao D, et al. Preparation of adenovirus-templated gold nanoshells and a study of their photothermal therapy efficacy. New J Chem. 2015;39:3608–3614. DOI:10.1039/C5NJ00037H
  • Zhang Y, Wan C, Du J, et al. The in vitro study of Her-2 targeted gold nanoshell liquid fluorocarbon poly lactic-co-glycolic acid ultrasound microcapsule for ultrasound imaging and breast tumor photothermal therapy. J Bio Sci Poly Ed. 2018;29:57–73. DOI:10.1080/09205063.2017.1399003
  • Zhang T, Huang S, Lin H, et al. Enzyme and pH-responsive nanovehicles for intracellular drug release and photodynamic therapy. New J Chem. 2017;41:2468–2478. DOI:10.1039/C6NJ02357F
  • Gharatape A, Davaran S, Salehi R, et al. Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv. 2016;6:111482–111516. DOI:10.1039/C6RA18760A
  • Ando T, Xuan W, Xu T, et al. Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS ONE. 2011;6:e26212. DOI:10.1371/journal.pone.0026212
  • Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128:2115–2120. DOI:10.1021/ja057254a
  • Takahashi H, Niidome T, Nariai A, et al. Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett. 2006;35:500–501. DOI:10.1246/cl.2006.500
  • Luo D, Carter KA, Miranda D, et al. Chemophototherapy: an emerging treatment option for solid tumors. Adv Sci. 2017;4:1600106. DOI:10.1002/advs.201600106
  • Xu C, Yang D, Mei L, et al. Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl Mater Interfaces. 2013;5:12911–12920. DOI:10.1021/am404714w
  • Zhang Y, Ang CY, Zhao Y. Polymeric nanocarriers incorporating near-infrared absorbing agents for potent photothermal therapy of cancer. Polym J. 2016;48:589–603. DOI:10.1038/pj.2015.117
  • Wu X, Zhou L, Su Y, et al. Plasmonic, targeted, and dual drugs-loaded polypeptide composite nanoparticles for synergistic cocktail chemotherapy with photothermal therapy. Biomacromolecules. 2016;17:2489–2501. DOI:10.1021/acs.biomac.6b00721
  • Hauck TS, Jennings TL, Yatsenko T, et al. Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater. 2008;20:3832–3838. DOI:10.1002/adma.200800921
  • Wu X, Zhou L, Su Y, et al. An autoreduction method to prepare plasmonic gold-embedded polypeptide micelles for synergistic chemo-photothermal therapy. J Mater Chem B. 2016;4:2142–2152. DOI:10.1039/c6tb00198j
  • Yang S, Palanikumar L, Jeong S, et al. Synergistic effect of photothermal therapy and chemotherapy using camptothecin-conjugated gold nanorods. Part Part Syst Charact. 2018;35:1700307. DOI:10.1002/ppsc.201700307
  • Wang L, Liu Y, Li W, et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett. 2011;11:772–780. DOI:10.1021/nl103992v
  • Wang J, Zhu C, Han J, et al. [ASAP] controllable synthesis of gold nanorod/conducting polymer core/shell hybrids toward in vitro and in vivo near-infrared photothermal therapy. ACS Appl Mater Interfaces. 2018;10:12323–12330. DOI:10.1021/acsami.7b16784
  • Zhang Z, Wang J, Nie X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc. 2014;136:7317–7326. DOI:10.1021/ja412735p
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater. 2013;12:991–1003. DOI:10.1038/nmat3776
  • Yang H, Mao H, Wan Z, et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials. 2013;34:9124–9133. DOI:10.1016/j.biomaterials.2013.08.022
  • Luo Z, Xu Y, Ye E, et al. Recent progress in macromolecule-anchored hybrid gold nanomaterials for biomedical applications. Macromolecular Rapid Communications. 2018;1800029:1–23. DOI:10.1002/marc.201800029
  • Li J, Liang J, Wu W, et al. AuCl4–responsive self-assembly of ionic liquid block copolymers for obtaining composite gold nanoparticles and polymeric micelles with controlled morphologies. New J Chem. 2014;38:2508–2513. DOI:10.1039/c4nj00128a
  • Leiva A, Fuentes I, Bossel E, et al. Block copolymers in the synthesis of gold nanoparticles. Two new approaches: copolymer aggregates as reductants and stabilizers and simultaneous formation of copolymer aggregates and gold nanoparticles. J Polym Sci Part A: Polym Chem. 2014;52:3069–3079. DOI:10.1002/pola.27354
  • Mahmoodzadeh F, Abbasian M, Jaymand M, et al. A novel dual stimuli-responsive thiol-end-capped ABC triblock copolymer: synthesis via reversible addition–fragmentation chain transfer technique, and investigation of its self-assembly behavior. Polym Int. 2017;66:1651–1661. DOI:10.1002/pi.5428
  • Wu C, Ma R, He H, et al. Fabrication of complex micelles with tunable shell for application in controlled drug release. Macromol Biosci. 2009;9:1185–1193. DOI:10.1002/mabi.200900232
  • Ding C, Li Z. A review of drug release mechanisms from nanocarrier systems. Materials Science & Engineering C. 2017;76:1440–1453. DOI:10.1016/j.msec.2017.03.130
  • Pan D, Caruthers S, Senpan A, et al. 2010. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology 2011 Hu W.pdf.pdf, Infona.Pl. (n.d.). https://www.infona.pl/resource/bwmeta1.element.wiley-wnan-v-7 (accessed July 7, 2018).
  • Xiang Y, Oo NNL, Lee JP, et al. Recent development of synthetic nonviral systems for sustained gene delivery. Drug Discovery Today.. 2017;22:1318–1335. DOI:10.1016/j.drudis.2017.04.001
  • Lu G, Wu D, Fu R. Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. Reactive & Functional Polymers. 2007;67:355–366. https://www.sciencedirect.com/science/article/pii/S1381514807000259 (accessed April 22, 2018).
  • Del Rosario Rodríguez-Hidalgo M, Soto-Figueroa C, Vicente L. Dissipative particle dynamics study of the structural inversion process of pH-responsive polymeric micelles. Macromol Theory Simul. 2014;23:49–58. DOI:10.1002/mats.201300131
  • Deng C, Chen X, Yu H, et al. A biodegradable triblock copolymer poly (ethylene glycol) - b - poly (L -lactide) - b -poly (L -lysine): synthesis, self-assembly, and RGD peptide modification. Elsevier. 2007;48:139. DOI:10.1016/j.polymer.2006.10.046
  • Abbasian M, Mahi R. In-situ synthesis of polymer - silica nanocomposites by living radical polymerisation using TEMPO initiator. J Exp Nanosci. 2014;9:785–798. DOI:10.1080/17458080.2012.714482
  • Li Z, Yin H, Zhang Z, et al. Supramolecular anchoring of DNA polyplexes in cyclodextrin-based polypseudorotaxane hydrogels for sustained gene delivery. Biomacromolecules. 2012;13:3162–3172. DOI:10.1021/bm300936x
  • Fan X, Wang X, Cao M, et al. “y”-shape armed amphiphilic star-like copolymers: design, synthesis and dual-responsive unimolecular micelle formation for controlled drug delivery. Polym Chem. 2017;8:5611–5620. DOI:10.1039/c7py00999b
  • Li Z, Liu X, Chen X, et al. Targeted delivery of Bcl-2 conversion gene by MPEG-PCL-PEI-FA cationic copolymer to combat therapeutic resistant cancer. Mater Sci Eng C. 2017;76:66–72. DOI:10.1016/j.msec.2017.02.163
  • Ahmadkhani L, Abbasian M, Akbarzadeh A. Synthesis of sharply thermo and PH responsive PMA-b-PNIPAM-b-PEGB-PNIPAM-b-PMA by RAFT radical polymerization and its schizophrenic micellization in aqueous solutions. Design Monom Polym. 2017;20:406–418. DOI:10.1080/15685551.2017.1314654
  • Hojjati B, Charpentier PA. Synthesis and kinetics of graft polymerization of methyl methacrylate from the RAFT coordinated surface of nano-TiO2. J Polym Sci A Polym Chem. 2008;46:3926–3937. DOI:10.1002/pola.22724
  • Derry MJ, Fielding LA, Armes SP. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog Polymer Sci. 2016;52:1–18. DOI:10.1016/j.progpolymsci.2015.10.002
  • Abbasian M, Bonab SES, Shoaeifar P, et al. Synthesis and characterization of amphiphilic methoxypoly(ethylene glycol)-polystyrene diblock copolymer by ATRP and NMRP techniques. J Elast & Plastics. 2012;44:205–220. DOI:10.1177/0095244311420537
  • Jaymand M, Hatamzadeh M, Omidi Y. Modification of polythiophene by the incorporation of processable polymeric chains: recent progress in synthesis and applications. Progr Polymer Sci. 2015;47:26–69. DOI:10.1016/j.progpolymsci.2014.11.004
  • Chen L, Chen B, Liu X, et al. Real-time monitoring of a controlled drug delivery system in vivo: construction of a near infrared fluorescence monomer conjugated with pH-responsive polymeric micelles. J Mater Chem B. 2016;4:3377–3386. DOI:10.1039/C6TB00315J
  • Bonengel S, Haupstein S, Perera G, et al. Thiolated and S-protected hydrophobically modified cross-linked poly(acrylic acid) - a new generation of multifunctional polymers. Eur J Pharm Biopharm. 2014;88:390–396. DOI:10.1016/j.ejpb.2014.06.009
  • Abbasian M, Mahmoodzadeh F. Synthesis of antibacterial silver-chitosan-modified bionanocomposites by RAFT polymerization and chemical reduction methods. J Elastom Plastics. 2017;49:173–193. DOI:10.1177/0095244316644858
  • Abbasian M, Mahmoodzadeh F. Synthesis of chitosan-graft-poly (acrylic acid) using 4-Cyano-4- [(Phenylcarbothioyl. Sulfanyl] Pentanoic Acid to Serve as RAFT Agent. J Polym. Mater. 2016;32:527–541.
  • Sofla SFI, Abbasian M, Mirzaei M. Synthesis and micellar characterization of novel pH-sensitive thiol-ended triblock copolymer via combination of RAFT and ROP processes. Int J Polymer Mater Polymer Biomater. 2018; 1–11. DOI:10.1080/00914037.2018.1445630
  • Xu X, Zhao Y, Xue X, et al. Seedless synthesis of high aspect ratio gold nanorods with high yield. J Mater Chem A. 2014;2:3528. DOI:10.1039/c3ta13905k
  • Davaran S, Ghamkhari A, Alizadeh E, et al. Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis,“schizophrenic” micellization, and its performance as an anticancer drug delivery nanosystem. J Colloid Interface Sci. 2017;488:282–293. DOI:10.1016/j.jcis.2016.11.002
  • Rahimi M, Shojaei S, Safa KD, et al. Biocompatible magnetic tris(2-aminoethyl)amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J Chem. 2017;41:2160–2168. DOI:10.1039/C6NJ03332F
  • Rahimi M, Safa KD, Alizadeh E, et al. Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. New J Chem. 2017;41:3177–3189. DOI:10.1039/c6nj04107h
  • Li G, Shi L, An Y, et al. Double-responsive core – shell – corona micelles from self-assembly of diblock copolymer of poly (t-butyl acrylate-co-acrylic acid) -b-poly (N-isopropylacrylamide). Elsevier. 2006;47:4581–4587. DOI:10.1016/j.polymer.2006.04.041
  • Wu C, Ying A, Ren S. Synthesis of stimuli responsive graft triblock polymers via combination of reversible addition-fragmentation chain transfer polymerization and ring opening polymerization. Asian J Chem. 2013;25:3344.
  • Khafaji M, Vossoughi M, Hormozi-Nezhad MR, et al. A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging. Sci Rep. 2016;6. DOI:10.1038/srep27847
  • Takahashi H, Niidome T, Nariai A, et al. Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology. 2006;17:4431–4435. DOI:10.1088/0957-4484/17/17/024
  • Chen CC, Lin YP, Wang CW, et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc. 2006;128:3709–3715. DOI:10.1021/ja0570180
  • Salehi R, Rasouli S, Hamishehkar H. Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate. Int J Pharmac. 2015;487:274–284. DOI:10.1016/j.ijpharm.2015.04.051
  • Zhang Y, Jin T, Zhuo RX. Methotrexate-loaded biodegradable polymeric micelles: preparation, physicochemical properties and in vitro drug release. Coll Surf B: Biointerfaces. 2005;44:104–109. DOI:10.1016/j.colsurfb.2005.06.004
  • Saniei N. Hyperthermia and cancer treatment. Heat Trans Eng. 2009;30:915–917. DOI:10.1080/01457630902854371
  • Hassan M, Farid D, Mahdi A, et al. Methotrexate-loaded PLGA nanoparticles: preparation, characterization and their cytotoxicity effect on human glioblastoma U87MG Cells. Int J Med Nano Res. 2017;4. DOI:10.23937/2378-3664/1410020
  • Dinarvand R, Taheri A, Atyabi F, et al. Nanoparticles of conjugated methotrexate-human serum albumin: preparation and cytotoxicity evaluations. J Nanomater. 2011;2011:1. DOI:10.1155/2011/768201
  • Huang HT, Li M, Wang L, et al. Gold nanorods as single and combined saturable absorbers for a high-energy Q-switched Nd:YAG solid-state laser. IEEE Photonics J. 2015;7:1–10. DOI:10.1109/JPHOT.2015.2460552
  • Yamashita S, Niidome Y, Katayama Y, et al. Photochemical reaction of poly(ethylene glycol) on gold nanorods induced by near infrared pulsed-laser irradiation. Chem Lett. 2009;38:226–227. DOI:10.1246/cl.2009.226

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.