216
Views
2
CrossRef citations to date
0
Altmetric
Articles

Preparation and antibacterial activity of silver-loaded poly(oligo(ethylene glycol) methacrylate) brush

, , , &
Pages 756-768 | Received 25 Feb 2019, Accepted 01 Apr 2019, Published online: 19 Apr 2019

References

  • Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 2015;33:637–652.
  • Swartjes JJTM, Sharma PK, Kooten TG, et al. Current developments in antimicrobial surface coatings for biomedical applications. CMC. 2015;22:2116–2129.
  • Shah SR, Tatara AM, D'Souza RN, et al. Evolving strategies for preventing biofilm on implantable materials. Mater Today. 2013;16:177–182.
  • Hoque J, Bhattacharjee B, Prakash RG, et al. Dual function injectable hydrogel for controlled release of antibiotic and local antibacterial therapy. Biomacromolecules. 2018;19:267–278.
  • He W, Huang X, Zheng Y, et al. In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property. J Biomater Sci Polym Ed. 2018;29:2137–2153.
  • Chen SG, Yuan LJ, Li QQ, et al. Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating. Small. 2016;12:3516–3521.
  • Mi L, Jiang SY. Integrated antimicrobial and nonfouling zwitterionic polymers. Angew Chem Int Ed. 2014;53:1746–1754.
  • Yeroslavsky G, Girshevitz O, Foster-Frey J, et al. Antibacterial and antibiofilm surfaces through polydopamine-assisted immobilization of lysostaphin as an antibacterial enzyme. Langmuir. 2015;31:1064–1073.
  • Wei T, Tang ZC, Yu Q, et al. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl Mater Interfaces. 2017;9:37511–37523.
  • Yu Q, Wu ZQ, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015;16:1–13.
  • Hartleb W, Saar JS, Zou P, et al. Just antimicrobial is not enough: toward bifunctional polymer surfaces with dual antimicrobial and protein-repellent functionality. Macromol Chem Phys. 2016;217:225–231.
  • Xu B, Liu Y, Sun X, et al. Semifluorinated synergistic nonfouling/fouling-release surface. ACS Appl Mater Interfaces.. 2017;9:16517–16523.
  • Mann MN, Fisher ER. Perspectives on antibacterial performance of silver nanoparticle-loaded three-dimensional polymeric constructs. Biointerphases. 2018;13:06e404.
  • Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10:339–354.
  • Xiu Z-M, Zhang Q-B, Puppala HL, et al. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–4275.
  • Kittler S, Greulich C, Diendorf J, et al. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater. 2010;22:4548–4554.
  • Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol. 2010;44:5649–5654.
  • Marambio-Jones C, Hoek E. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12:1531–1551.
  • Park H-J, Kim JY, Kim J, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009;43:1027–1032.
  • Gupta S, Agrawal M, Conrad M, et al. Poly(2-(dimethylamino)ethyl methacrylate) brushes with incorporated nanoparticles as a SERS active sensing layer. Adv Funct Mater. 2010;20:1756–1761.
  • Yin J-J, Wahid F, Zhang Q, et al. Facile incorporation of silver nanoparticles into quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes as bifunctional antibacterial coatings. Macromol Mater Eng. 2017;302:1700069.
  • Krishnamoorthy M, Hakobyan S, Ramstedt M, et al. Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev. 2014;114:10976–11026.
  • Feng C, Huang X. Polymer brushes: efficient synthesis and applications. Acc Chem Res. 2018;51:2314–2323.
  • Ferhan AR, Zainol N, Kim DH. A facile method towards rough morphology polymer brush for increased mobility of embedded nanoparticles. Polymer. 2015;75:57–63.
  • Christau S, Möller T, Yenice Z, et al. Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes. Langmuir. 2014;30:13033–13041.
  • Gupta S, Uhlmann P, Agrawal M, et al. Immobilization of silver nanoparticles on responsive polymer brushes. Macromolecules. 2008;41:2874–2879.
  • Rahim FA, Dong-Hwan K. Nanoparticle polymer composites on solid substrates for plasmonic sensing applications. Nano Today. 2016;11:415–434.
  • Hu R, Li G, Jiang Y, et al. Silver-zwitterion organic-inorganic nanocomposite with antimicrobial and antiadhesive capabilities. Langmuir. 2013;29:3773–3779.
  • Ho CH, Odermatt EK, Berndt I, et al. Long-term active antimicrobial coatings for surgical sutures based on silver nanoparticles and hyperbranched polylysine. J Biomater Sci Polym Ed. 2013;24:1589–1600.
  • Tugulu S, Klok HA. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes-under cell culture conditions. Biomacromolecules. 2008;9:906–912.
  • He H, Jing W, Xing W, et al. Improving protein resistance of alpha-Al2O3 membranes by modification with POEGMA brushes. Appl Surf Sci. 2011;258:1038–1044.
  • Brown AA, Khan NS, Steinbock L, et al. Synthesis of oligo(ethylene glycol) methacrylate polymer brushes. Eur Polym J. 2005;41:1757–1765.
  • Lee S-M, Cho H-J, Han JY, et al. Silver nanoparticles preferentially reduced on PEG-grafted glass surfaces for SERS applications. Mater Res Bull. 2013;48:1523–1529.
  • Ferhan AR, Kim DH. In-stacking: a strategy for 3D nanoparticle assembly in densely-grafted polymer brushes. J Mater Chem. 2012;22:1274–1277.
  • Zhang Q, Yin J-J, Liu F, et al. Immobilization of silver nanoparticles into POEGMA polymer brushes as SERS-active substrates. Surf Interface Anal. 2017;49:316–322.
  • Lee BS, Chi YS, Lee KB, et al. Functionalization of poly(oligo(ethylene glycol)methacrylate) films on gold and Si/SiO2 for immobilization of proteins and cells: SPR and QCM studies. Biomacromolecules. 2007;8:3922–3929.
  • Knoll W. Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem. 1998;49:569–638.
  • Chu L-Q, Zhang Q, Förch R. Surface plasmon-based techniques for the analysis of plasma deposited functional films and surfaces. Plasma Process Polym. 2015;12:941–952.
  • Biswas P, Bandyopadhyaya R. Biofouling prevention using silver nanoparticle impregnated polyethersulfone (PES) membrane: E. coli cell-killing in a continuous cross-flow membrane module. J Colloid Interface Sci. 2017;491:13–26.
  • Wahid F, Yin J-J, Xue D-D, et al. Synthesis and characterization of antibacterial carboxymethyl chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol. 2016;88:273–279.
  • Zhang Z, Zhu W. Controllable-density nanojunctions as SERS substrates for highly sensitive detection. Appl Surf Sci. 2015;333:214–219.
  • Uetsuki K, Verma P, Yano T-A, et al. Experimental identification of chemical effects in surface enhanced Raman scattering of 4-aminothiophenol. J Phys Chem C. 2010;114:7515–7520.
  • Zheng JW, Zhou YG, Li XW, et al. Surface-enhanced Raman scattering of 4-aminothiophenol in assemblies of nanosized particles and the macroscopic surface of silver. Langmuir. 2003;19:632–636.
  • Zhang W, Yao Y, Sullivan N, et al. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol. 2011;45:4422–4428.
  • Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 2010; 44:2169–2175.
  • Levard C, Mitra S, Yang T, et al. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol. 2013;47:5738–5745.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.