504
Views
18
CrossRef citations to date
0
Altmetric
Articles

Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin–chitosan scaffolds for bone tissue engineering

, &
Pages 1756-1778 | Received 11 Jul 2019, Accepted 01 Sep 2019, Published online: 17 Sep 2019

References

  • Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3(3):278–314.
  • O'brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.
  • Deepthi S, Venkatesan J, Kim S-K, et al. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93:1338–1353.
  • Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. In: Yannas I.V. (ed.) Regenerative Medicine II. Advances in Biochemical Engineering, vol 94. (2005) p. 1-22, Springer, Berlin, Heidelberg
  • Asti A, Gioglio L. Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs. 2014;37(3):187–205.
  • Salimi E, Javadpour J. Synthesis and characterization of nanoporous monetite which can be applicable for drug carrier. J Nanomater. 2012;2012:1–5.
  • Dorozhkin S. Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials. 2009;2(4):1975–2045.
  • Huang C, Cao P. Tuning Ca:P ratio by NaOH from monocalcium phosphate monohydrate (MCPM). Mater Chem Phys. 2016;181:159–166.
  • Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 2012;8(2):474–487.
  • Prajatelistia E, Lim C, Oh DX, et al. Chitosan and hydroxyapatite composite cross‐linked by dopamine has improved anisotropic hydroxyapatite growth and wet mechanical properties. Eng Life Sci. 2015;15(2):254–261.
  • Park KH, Kim S-J, Lee W-Y, et al. Hydrothermal fabrication and characterization of calcium phosphate anhydrous/chitosan composites. Ceram Int. 2017;43(2):2786–2790.
  • Escobar-Sierra DM, Martins J, Ossa-Orozco CP. Chitosan/hydroxyapatite scaffolds for tissue engineering manufacturing method effect comparison. Rev Fac Ing Antioquia. 2015;(75):24–35.
  • Farshi Azhar F, Olad A, Salehi R. Fabrication and characterization of chitosan–gelatin/nanohydroxyapatite–polyaniline composite with potential application in tissue engineering scaffolds. Des Monomers Polym. 2014;17(7):654–667.
  • Cai B, Zou Q, Zuo Y, et al. Fabrication and cell viability of injectable n-HA/chitosan composite microspheres for bone tissue engineering. Rsc Adv. 2016;6(89):85735–85744.
  • Nazeer MA, Yilgör E, Yilgör I. Intercalated chitosan/hydroxyapatite nanocomposites: promising materials for bone tissue engineering applications. Carbohydr Polym. 2017;175:38–46.
  • Lien S-M, Li W-T, Huang T-J. Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Mater Sci Eng C. 2008;28(1):36–43.
  • Thein-Han WW, Saikhun J, Pholpramoo C, et al. Chitosan–gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP–buffalo embryonic stem cells. Acta Biomater. 2009;5(9):3453–3466.
  • Georgopoulou A, Papadogiannis F, Batsali A, et al. Chitosan/gelatin scaffolds support bone regeneration. J Mater Sci Mater Med. 2018;29(5):59.
  • Maji K, Dasgupta S, Pramanik K, et al. Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. Int J Biomater. 2016;2016:1–14.
  • Kon E, Filardo G, Perdisa F, et al. Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Ortop. 2014;1(1):10.
  • Maji K, Dasgupta S, Kundu B, et al. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. J Biomater Sci Polym Ed. 2015;26(16):1190–1209.
  • Zhao F, Grayson WL, Ma T, et al. Effects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials. 2006;27(9):1859–1867.
  • Maji K, Dasgupta S, Pramanik K, et al. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. Mater Sci Eng C. 2018;86:83–94.
  • Singh BN, Panda NN, Mund R, et al. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr Polym. 2016;151:335–347.
  • Maji K, Dasgupta S. Effect of βtricalcium phosphate nanoparticles additions on the properties of gelatin–chitosan scaffolds. Bioceram Dev Appl. 2017;7(103):2.
  • Jang W-G, Kim E-J, Kim D-K, et al. BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J Biol Chem. 2012;287(2):905–915.
  • Eshtiagh-Hosseini H, Houssaindokht MR, Chahkandhi M, et al. Preparation of anhydrous dicalcium phosphate, DCPA, through sol–gel process, identification and phase transformation evaluation. J Non-Cryst Solids. 2008;354(32):3854–3857.
  • Mohammadi Z, Sheikh − Mehdi Mesgar A, Rasouli − Disfani F, et al. Preparation and characterization of single phase, biphasic and triphasic calcium phosphate whisker-like fibers by homogenous precipitation using urea. Ceram Int. 2016;42(6):6955–6961.
  • Reig FB, Adelantado JG, Moreno MM. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta. 2002;58(4):811–821.
  • Tas AC. Monetite (CaHPO4) synthesis in ethanol at room temperature. J Am Ceram Soc. 2009;92(12):2907–2912.
  • Mesgar AS, Mohammadi Z, Khosrovan S. Improvement of mechanical properties and in vitro bioactivity of freeze-dried gelatin/chitosan scaffolds by functionalized carbon nanotubes. Int J Polym Mater Polym Biomater. 2018;67(5):267–276.
  • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518.
  • Mulongo-Masamba R, El Hamidi A, Khachani M, et al. Synthesis and characterization of new β-chitin/calcium phosphate (DCPA) based composite using natural resources for environmental application. Colloids Surf A Physicochem Eng Asp. 2017;520:686–693.
  • Nieto-Suárez M, López-Quintela MA, Lazzari M. Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym. 2016;141:175–183.
  • Kane RJ, Weiss-Bilka HE, Meagher MJ, et al. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomater. 2015;17:16–25.
  • Chen X, Wang J, Chen Y, et al. Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. J Mater Chem B. 2016;4(13):2280–2289.
  • Habraken W, Habibovic P, Epple M, et al. Calcium phosphates in biomedical applications: materials for the future? Mater Today. 2016;19(2):69–87.
  • Liu H, Peng H, Wu Y, et al. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials. 2013;34(18):4404–4417.
  • Tang Z, Li X, Tan Y, et al. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen Biomater. 2018;5(1):43–59.
  • Granéli C, Thorfve A, Ruetschi U, et al. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem cell Res. 2014;12(1):153–165.
  • Fan H, Ikoma T, Tanaka J, et al. Surface structural biomimetics and the osteoinduction of calcium phosphate biomaterials. J Nanosci Nanotechnol. 2007;7(3):808–813.
  • De Groot K. Carriers that concentrate native bone morphogenetic protein in vivo. Tissue Eng. 1998;4(4):337.
  • Cama G, Gharibi B, Knowles JC, et al. Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method. J R Soc Interface. 2014;11(101):20140727.
  • Aguirre A, González A, Planell JA, et al. Extracellular calcium modulates in vitro bone marrow-derived Flk-1+ CD34+ progenitor cell chemotaxis and differentiation through a calcium-sensing receptor. Biochem Biophys Res Commun. 2010;393(1):156–161.
  • González-Vázquez A, Planell JA, Engel E. Extracellular calcium and CaSR drive osteoinduction in mesenchymal stromal cells. Acta Biomater. 2014;10(6):2824–2833.
  • Dvorak MM, Riccardi D. Ca2+ as an extracellular signal in bone. Cell Calcium. 2004;35(3):249–255.
  • Breitwieser GE. Extracellular calcium as an integrator of tissue function. Int J Biochem Cell Biol. 2008;40(8):1467–1480.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.