519
Views
23
CrossRef citations to date
0
Altmetric
Articles

The physical, mechanical, and biological properties of silk fibroin/chitosan/reduced graphene oxide composite membranes for guided bone regeneration

, &
Pages 1779-1802 | Received 22 May 2019, Accepted 07 Sep 2019, Published online: 23 Sep 2019

References

  • Lu S, Wang P, Zhang F, et al. A novel silk fibroin nanofibrous membrane for guided bone regeneration: a study in rat calvarial defects. Am J Transl Res. 2015;7(11):2244.
  • Lawrence BD, Omenetto F, Chui K, et al. Processing methods to control silk fibroin film biomaterial features. J Mater Sci. 2008;43(21):6967.
  • Lee S-W, Kim S-G, Song J-Y, et al. Silk fibroin and 4-hexylresorcinol incorporation membrane for guided bone regeneration. J Craniofac Surg. 2013;24(6):1927–1930.
  • Teng SH, Lee EJ, Wang P, et al. Three‐layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration. J Biomed Mater Res. 2008;87(1):132–138.
  • Gutta R, Baker RA, Bartolucci AA, et al. Barrier membranes used for ridge augmentation: is there an optimal pore size? J Oral Maxillofac Surg. 2009;67(6):1218–1225.
  • Ronda M, Rebaudi A, Torelli L, et al. Expanded vs. dense polytetrafluoroethylene membranes in vertical ridge augmentation around dental implants: a prospective randomized controlled clinical trial. Clin Oral Impl Res. 2014;25(7):859–866.
  • Shirtliff V, Hench L. Bioactive materials for tissue engineering, regeneration and repair. J Mater Sci. 2003;38(23):4697–4707.
  • Wan Y, Creber KA, Peppley B, et al. Ionic conductivity of chitosan membranes. Polymer. 2003;44(4):1057–1065.
  • Li Z, Ramay HR, Hauch KD, et al. Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919–3928.
  • She Z, Zhang B, Jin C, et al. Preparation and in vitro degradation of porous three-dimensional silk fibroin/chitosan scaffold. Polym Degrad Stab. 2008;93(7):1316–1322.
  • Li P, Jia Z, Wang Q, et al. A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties. J Mater Chem B. 2018;6(45):7427–7438.
  • D-W LI, He J, F-L HE, et al. Advances in application of silk fibroin/chitosan composite in tissue engineering. China Biotechnol. 2017;37(10):111–117.
  • Cho Y-D, Seol Y-J, Lee Y-M, et al. An overview of biomaterials in periodontology and implant dentistry. Adv Mater Sci Eng. 2017;2017:1.
  • Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–416.
  • Gobin AS, Froude VE, Mathur AB. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J Biomed Mater Res. 2005;74(3):465–473. Biomaterials.
  • Han J, Zhou Z, Yin R, et al. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Int J Biol Macromol. 2010;46(2):199–205.
  • Li Z-H, Ji S-C, Wang Y-Z, et al. Silk fibroin-based scaffolds for tissue engineering. Front Mater Sci. 2013;7(3):237–247.
  • Dinescu S, Ionita M, Pandele AM, et al. In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering. Biomed Mater Eng. 2014;24(6):2249–2256.
  • Han D, Yan L, Chen W, et al. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym. 2011;83(2):653–658.
  • Depan D, Girase B, Shah J, et al. Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater. 2011;7(9):3432–3445.
  • Venkatesan J, Pallela R, Kim S-K. Applications of carbon nanomaterials in bone tissue engineering. J Biomed Nanotechnol. 2014;10(10):3105–3123.
  • Mukherjee S, Sriram P, Barui AK, et al. Graphene oxides show angiogenic properties. Adv Healthcare Mater. 2015;4(11):1722–1732.
  • Gurunathan S, Han JW, Dayem AA, et al. Antibacterial activity of dithiothreitol reduced graphene oxide. J Ind Eng Chem. 2013;19(4):1280–1288.
  • Hermenean A, Codreanu A, Herman H, et al. Chitosan-graphene oxide 3D scaffolds as promising tools for bone regeneration in critical-size mouse calvarial defects. Sci Rep. 2017;7(1):16641.
  • Perrone GS, Leisk GG, Lo TJ, et al. The use of silk-based devices for fracture fixation. Nat Commun. 2014;5(1):3385.
  • Lee S-H, Lim Y-M, Jeong SI, et al. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. J Adv Prosthodont. 2015;7(6):484–495.
  • Xue J, He M, Liu H, et al. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials. 2014;35(34):9395–9405.
  • Saleem H, Haneef M, Abbasi HY. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater Chem Phys. 2018;204:1–7.
  • Elgali I, Omar O, Dahlin C, et al. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315–337.
  • Shim J-H, Jeong JH, Won JY, et al. Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration. Biomed Mater. 2017;13(1):015014.
  • Hutmacher DW, Sittinger M. Periosteal cells in bone tissue engineering. Tissue Eng. 2003;9(Suppl 1):45–64.
  • Marouf HA, El-Guindi HM. Efficacy of high-density versus semipermeable PTFE membranes in an elderly experimental model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89(2):164–170.
  • Pineda LM, Busing M, Meinig RP, et al. Bone regeneration with resorbable polymeric membranes. III. Effect of poly (L‐lactide) membrane pore size on the bone healing process in large defects. J Biomed Mater Res. 1996;31(3):385–394.
  • Bhardwaj N, Kundu SC. Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym. 2011;85(2):325–333.
  • Bubalo M, Lazić Z, Matić S, et al. The impact of thickness of resorbable membrane of human origin on the ossification of bone defects: a pathohistologic study. Vojnosanit Pregl. 2012;69(12):1076–1083.
  • Moses O, Vitrial D, Aboodi G, et al. Biodegradation of three different collagen membranes in the rat calvarium: a comparative study. J Periodontol. 2008;79(5):905–911.
  • Moses O, Pitaru S, Artzi Z, et al. Healing of dehiscence‐type defects in implants placed together with different barrier membranes: a comparative clinical study. Clin Oral Implants Res. 2005;16(2):210–219.
  • Dupoirieux L, Pourquier D, Picot M, et al. Comparative study of three different membranes for guided bone regeneration of rat cranial defects. Int J Oral Maxillofac Surg. 2001;30(1):58–62.
  • Pandele AM, Ionita M, Lungu A, et al. Porous chitosan/graphene oxide biocomposites for tissue engineering. Polym Compos. 2017;38(2):363–370.
  • Han H, Ning H, Liu S, et al. Silk biomaterials with vascularization capacity. Adv Funct Mater. 2016;26(3):421–432.
  • Luo K, Yang Y, Shao Z. Physically crosslinked biocompatible silk‐fibroin‐based hydrogels with high mechanical performance. Adv Funct Mater. 2016;26(6):872–880.
  • Dai X, Wang L, Ma K, et al. Characterization of a hybridization scaffold based on PLGA/acellular pigskin for nerve regeneration. J Med Biol Eng. 2012;33(2):221–228.
  • She Z, Liu W, Feng Q. Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds. Biomed Mater. 2009;4(4):045014.
  • Lai G-J, Shalumon K, Chen S-H, et al. Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym. 2014;111:288–297.
  • Li S-T, Chen H-C, Lee NS, et al. A comparative study of zimmer BioMend® and BioMend® Extend™ membranes made at two different manufacturing facilities. Zimmer Dental White Paper. 2013;1–5.
  • Li S-T, Yuen D, Martin D, et al. A comparative study of a new porcine collagen membrane to Bio-Gide®. Science Technology, Innovation. 2015, Feb 1–5. Available from: https://www.osseonews.com/wp-content/uploads/2016/11/Bio-Gide-PCM-white-paper.pdf.
  • Serrano M, Feito M, González-Mayorga A, et al. Response of macrophages and neural cells in contact with reduced graphene oxide microfibers. Biomater Sci. 2018;6(11):2987–2997.
  • Han L, Sun H, Tang P, et al. Mussel-inspired graphene oxide nanosheet-enwrapped Ti scaffolds with drug-encapsulated gelatin microspheres for bone regeneration. Biomater Sci. 2018;6(3):538–549.
  • Afshar HA, Ghaee A. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment. Carbohydr Polym. 2016;151:1120–1131.
  • Jahan K, Mekhail M, Tabrizian M. One-step fabrication of apatite-chitosan scaffold as a potential injectable construct for bone tissue engineering. Carbohydr Polym. 2019;203:60–70.
  • Nasrollahi N, Dehkordi AN, Jamshidizad A, et al. Preparation of brushite cements with improved properties by adding graphene oxide. Int J Nanomed. 2019;14:3785.
  • Nayak TR, Andersen H, Makam VS, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011;5(6):4670–4678.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.