434
Views
7
CrossRef citations to date
0
Altmetric
Articles

Keratinocytes-hair follicle bulge stem cells-fibroblasts co-cultures on a tri-layer skin equivalent derived from gelatin/PEG methacrylate nanofibers

ORCID Icon &
Pages 869-894 | Received 17 Aug 2019, Accepted 26 Jan 2020, Published online: 19 Feb 2020

References

  • Ko SH, Nauta A, Wong V, et al. The role of stem cells in cutaneous wound healing: what do we really know? Plast Reconstr Surg. 2011;127:10S–20S.
  • Gianino E, Miller C, Gilmore J. Smart wound dressings for diabetic chronic wounds. Bioengineering 2018;5(3):E51. doi:10.3390/bioengineering5030051.
  • Bryan KS, Zurab S, Paul AK. Advances in skin grafting and treatment of cutaneous wounds. Science 2014; 346:941–945.
  • Halim AS, Khoo TL, Mohd Yussof SJ. Biologic and synthetic skin substitutes: an overview. Indian J Plast Surg. 2010;43(3):23–S28.
  • Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol. 2001;2(5):305–313.
  • Rúben FP, Cristina CB, Pedro LG, et al. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine 2013;8:603–621.
  • Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23(4):403–412.
  • Varkey M, Ding J, Tredget EE. Advances in skin substitutes- Potential of tissue engineered skin for facilitating anti-fibrotic healing. JFB. 2015;6(3):547–563.
  • Macneil S. Progress and opportunities for tissue engineered skin. Nature 2007;445(7130):874–880.
  • Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. WIREs Nanomed Nanobiotechnol. 2010;2(5):510–525.
  • Anthony DM, Mark WJF. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 2007;22:413–437.
  • Travis JS, Horst AR. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989–2006.
  • Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–258.
  • Mohamed A, Xing MM. Nanomaterials and nanotechnology for skin tissue engineering. Int J Burns Trauma 2012;2(1):29–41.
  • Duan H, Feng B, Guo X, et al. Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes. Int J Nanomedicine. 2013;8:2077–2084.
  • Sundaramurthi D, Krishnan UM, Sethuraman S. Electrospun nanofibers as scaffolds for skin tissue engineering. Polym Rev. 2014;54(2):348–376.
  • Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004;25(7/8):1289–1297.
  • Zhou T, Wang N, Xue Y, et al. Development of biomimetic tilapia collagen nanofibers for skin regeneration through inducing keratinocytes differentiation and collagen synthesis of dermal fibroblasts. ACS Appl Mater Interfaces. 2015;7(5):3253–3262.
  • Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832–864.
  • Nigam R, Mahanta B. An overview of various biomimetic scaffolds: Challenges and applications in tissue engineering. J Tissue Sci Eng. 2014;5:1–5.
  • Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1(3):161–176.
  • Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000;21(23):2335–2346.
  • Gunatillake PA, CSIRO Molecular Science, Bag 10, Clayton South MDC, Vic 3169, Australia, Adhikari R. Biodegradable synthetic polymers for tissue engineering. eCM. 2003;5:1–16.
  • Khan F, Tanaka M. Designing smart biomaterials for tissue engineering. Int J Mol Sci. 2017;19(1):17. doi:10.3390/ijms19010017.
  • Abaci HE, Guo Z, Doucet Y, et al. Next generation human skin constructs as advanced tools for drug development. Exp Biol Med. 2017; 242:1657–1668.
  • Levy V, Lindon C, Zheng Y, et al. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 2007;21(7):1358–1366.
  • Levy V, Lindon C, Harfe BD, et al. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell. 2005;9(6):855–861.
  • Lavker RM, Sun TT, Oshima H, et al. Hair follicle stem cells. J Investig Dermatol Symp Proc. 2003;8(1):28–38.
  • Pandey PR, Chanchal A, Vohra R, et al. Gelatin biopolymer: a journey from micro to nano. J. Pharm. Res. 2014;8:1387–1397.
  • Davidenko N, Schuster CF, Bax DV, et al. Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. J Mater Sci Mater Med. 2016;27:148.
  • Tondera C, Hauser S, Krüger-Genge A, et al. Gelatin-based hydrogel degradation and tissue interaction in vivo: Insights from multimodal preclinical imaging in immunocompetent nude mice. Theranostics 2016;6(12):2114–2128.
  • Yang Q, Guo C, Deng F, et al. Fabrication of highly concentrated collagens using cooled urea/HAc as novel binary solvent. J Mol Liq. 2019;291:111304.
  • Echave MC, Saenz del Burgo L, Pedraz JL, et al. Gelatin as biomaterial for tissue-engineering. Curr Pharm Des. 2017;23(24):3567–3584.
  • Chiellini E, Cinelli P, Grillo Fernandes E, et al. Gelatin-based blends and composites. morphological and thermal mechanical characterization. Biomacromolecules 2001;2(3):806–811.
  • Vats K, Marsh G, Harding K, et al. Nanoscale physicochemical properties of chain- and step-growth polymerized PEG hydrogels affect cell-material interactions. J Biomed Mater Res. 2017;105(4):1112–1122.
  • Donaldson AR, Tanase CE, Awuah D, et al. Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells. Front Bioeng Biotechnol. 2018;19:116.
  • Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015;73:254–271.
  • Klotz BJ, Gawlitta D, Rosenberg A, et al. Gelatin-methacryloyl yydrogels: towards biofabrication-based tissue repair. Trends Biotechnol. 2016;34(5):394–407.
  • Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog Polym Sci. 2011;36(9):1254–1276.
  • Wang N, Burugapalli K, Wijesuriya S, et al. Electrospun polyurethane-core and gelatin-shell coaxial fibre coatings for miniature implantable biosensors. Biofabrication 2013;6(1):015002.
  • Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49:832–864.
  • Gonçalves de Pinho AR, Odila I, Leferink A, et al. Hybrid polyester-hydrogel electrospun scaffolds for tissue engineering applications. Front Bioeng Biotechnol. 2019;7:231.
  • Wu J, Hong Y, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater. 2016;1(1):56–64.
  • Thompson CJ, Chase GG, Yarin AL, et al. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 2007;48(23):6913–6922.
  • Wang C, Chien HS, Yan KW, et al. Correlation between processing parameters and microstructure of electrospun poly(D,L-lactic acid) nanofibers. Polymer 2009;50(25):6100–6110.
  • Powell HM, Boyce ST. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal–epidermal skin substitutes. J Biomed Mater Res. 2008;84A(4):1078–1086.
  • Tan EPS, Lim CT. Physical properties of a single polymeric nanofiber. Appl Phys Lett. 2004;84(9):1603–1605.
  • Shin MK, Kim SI, Kim SJ, et al. Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl Phys Lett. 2006;89:2004–2007.
  • Papkov D, Zou Y, Andalib MN, et al. Simultaneously strong and tough ultra fine continuous nanofibers. ACS Nano. 2013;7(4):3324–3331.
  • Liu J, Lin DY, Wei B, et al. Single electrospun PLLA and PCL polymer nanofibers: increased molecular orientation with decreased fiber diameter. Polymer 2017;118:143–149.
  • Pailler-Mattei C, Bec S, Zahouani H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys. 2008;30(5):599–606.
  • Ermis M, Antmen E, Hasirc V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective. Bioact Mater. 2018;3(3):355–369.
  • Hasskarl J, Velupillai P, Piboonniyom SO, et al. Long-term maintenance of human keratinocytes in vitro. J Invest Dermatol. 2005;124(2):475–478.
  • Omidian H, Hasherni S, Askari F, et al. Swelling and crosslink density measurements for hydrogels. J Polym Sci Technol. 1994;3:115–119.
  • Qiao C, Cao X, Wang F. Swelling behavior study of physically crosslinked gelatin hydrogels. Polym Polym Compos. 2012;20:53–58.
  • Wong RSH, Ashton M, Dodou K. Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics 2015;7(3):305–319.
  • Piraino F, Selimović S. A current view of functional biomaterials for wound care, molecular and cellular therapies. Biomed Res Int. 2015;6:1–10.
  • Miyazaki H, Tsunoi Y, Akagi T, et al. A novel strategy to engineer pre-vascularized 3-dimensional skin substitutes to achieve efficient. Sci Rep. 2019;9(1):7797. doi:10.1038/s41598-019-44113-6.
  • Hsu S-h, Hung K-C, Chen C-W. Biodegradable polymer scaffolds. J Mater Chem B. 2016;4(47):7493–7505.
  • Wiwatwongwana F, Surin P. In vitro degradation of gelatin/carboxy methylcellulose scaffolds for skin tissue regeneration. Chem Eng Trans. 2019;74:1555–1560.
  • Wun BP, Tao Q, Lyle S. Auto fluorescence in the stem cell region of the hair follicle bulge. J Invest Dermatol. 2005;124:860–862.
  • Amoh Y, Mii S, Aki R, et al. Multipotent nestin-expressing stem cells capable of forming neurons are located in the upper, middle and lower part of the vibrissa hair follicle. Cell Cycle. 2012;11(18):3513–3517.
  • Mignone JL, Roig-Lopez JL, Fedtsova N, et al. Neural potential of a stem cell population in the hair follicle. Cell Cycle. 2007;6(17):2161–2170.
  • Liu Y, Lyle S, Yang Z, et al. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol. 2003;121(5):963–968.
  • Poblet E, Jimenez F, Godinez JM, et al. The immuno histochemical expression of CD34 in human hair follicles: a comparative study with the bulge marker CK15. Clin Exp Dermatol. 2006;31(6):807–812.
  • Oh JH, Mohebi P, Farkas DL, et al. Towards expansion of human hair follicle stem cells in vitro. Cell Prolif. 2011;44(3):244–253.
  • Forni MF, Ramos Maia Lobba A, Pereira Ferreira AH, et al. Simultaneous isolation of three different stem cell populations from murine skin. PLoS One. 2015;10(10):e0140143.
  • Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705–733.
  • Kumar A, Jagannathan N. Cytokeratin: a review on current concepts. Int J Orofac Biol. 2018;2(1):6–11.
  • Gu SY, Wang ZM, Ren J, et al. Electrospinning of gelatin and gelatin/poly(l-lactide) blend and its characteristics for wound dressing. Mater Sci Eng C. 2009;29(6):1822–1828.
  • Goodpaster T, Legesse-Miller A, Hameed MR, et al. An immunohistochemical method for identifying fibroblasts in formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem. 2008;56(4):347–358.
  • Kim MY, Li DJ, Pham LK, et al. Microfabrication of high-resolution porous membranes for cell culture. J Memb Sci. 2014; 452:460–469.
  • Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kruszewska A, et al. Therapeutic potential of stem cells in follicle regeneration. Stem Cells Int. 2018;5:1049641.
  • Fuchs E, Horsley V. More than one way to skin. Genes Dev. 2008;22(8):976–985.
  • Huang S, Fu X. Cell behavior on microparticles with different surface morphology. J Alloy Compd. 2010;493(1-2):246–251.
  • Dhandayuthapani B, Yoshida Y, Maekawa T, et al. Polymeric scaffolds in tissue engineering application: A review. Int J Polym Sci. 2011;2011:1–19.
  • Kumar P, Dehiya BS, Sindhu A. Comparative study of chitosan and chitosan–gelatin scaffold for tissue engineering. Int Nano Lett. 2017;7(4):285–290.
  • Binulal NS, Natarajan A, Menon D, et al. PCL–gelatin composite nanofibers electrospun using diluted acetic acid–ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed. 2014;25(4):325–340.
  • Wang TW, Huang YC, Sun JS, et al. Keratinocyte-fibroblast co-cultures on a bi-layered gelatin scaffold for skin equivalent tissue engineering. J Med Biol Eng. 2019;23:213–219.
  • Chen L, Yan C, Zheng Z. Functional polymer surfaces for controlling cell behaviors. Mater Today. 2018;21(1):38–59.
  • Singh D, Singh D, Choi SM, et al. Effect of extracts of Terminalia chebula on proliferation of keratinocytes and fibroblasts cells: an alternative approach for wound healing. Evid Based Complement Alternat Med. 2014;2014:1–13.
  • Goodarzi P, Falahzadeh K, Nematizadeh M, et al. Tissue-engineered skin substitutes. Adv Exp Med Biol. 2018;1107:143–188.
  • Vig K, Chaudhari A, Tripathi S, et al. Advances in skin regeneration using tissue engineering. IJMS 2017;18(4):789.
  • Brohem CA, Cardeal LB, Tiago M, et al. Artificial skin in perspective: concepts and applications. Pigm Cell Melanoma R. 2011;24(1):35–50.
  • Boyce ST, Lalley AL. Tissue engineering of skin and regenerative medicine for wound care. Burns Trauma. 2018; 6:4. doi:10.1186/s41038-017-0103-y.
  • Jackson WM, Nesti LJ, Tuan RS. Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med. 2012;1(1):44–50.
  • Bottcher-Haberzeth S, Klar AS, Biedermann T, et al. Trooping the color”: restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs. Pediatr Surg Int. 2013; 29:239–247.
  • Ouwehand K, Spiekstra SW, Waaijman T, et al. Technical Advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. J Leukoc Biol. 2011;90(5):1027–1033.
  • Bechetoille N, Vachon H, Gaydon A, et al. A new organotypic model containing dermal‐type macrophages. Exp Dermatol. 2011;20(12):1035–1037.
  • Mistriotis P, Andreadis ST. Hair follicle: a novel source of multipotent stem cells for tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2013;19(4):265–278.
  • Morris RJ, Liu Y, Marles L, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 2004;22(4):411–417.
  • Waters JM, Richardson GD, Jahoda CA. Hair follicle stem cells. Semin Cell Dev Biol 2007;18(2):245–254.
  • Roger M, Fullard N, Costello L, et al. Bioengineering the microanatomy of human skin. J Anat. 2019;234(4):438–455.
  • Amoh Y, Li L, Katsuoka K, et al. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci USA. 2005;102(15):5530–5334.
  • Wong T, McGrath JA, Navsaria H. The role of fibroblasts in tissue engineering and regeneration. Br J Dermatol. 2007;156(6):1149–1155.
  • Keogh MB, O’ Brien FJ, Daly JS. A novel collagen scaffold supports human osteogenesis- applications for bone tissue engineering. Cell Tissue Res. 2010;340(1):169–177.
  • Sun T, Haycock J, Macneil S. In situ image analysis of interactions between normal human keratinocytes and fibroblasts cultured in three-dimensional fibrin gels. Biomaterials 2006;27(18):3459–3465.
  • Levine JF, Stockdale FE. Cell-cell interactions promote mammary epithelial cell differentiation. J Cell Biol. 1985;100(5):1415–1422.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.