327
Views
10
CrossRef citations to date
0
Altmetric
Articles

Tumor-targeting and imaging micelles for pH-triggered anticancer drug release and combined photodynamic therapy

, , , , , & show all
Pages 1385-1404 | Received 25 Aug 2019, Accepted 07 Apr 2020, Published online: 05 May 2020

References

  • Li H, Du J, Liu J, et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano. 2016;10(7):6753–6761.
  • Yin Y, Hu Q, Xu C, et al. Co-delivery of doxorubicin and interferon-γ by thermosensitive nanoparticles for cancer immunochemotherapy. Mol Pharmaceutics. 2018;15(9):4161–4172.
  • Wang Y, Chen X, He D, et al. Surface-modified nanoerythrocyte loading DOX for targeted liver cancer chemotherapy. Mol Pharmaceutics. 2018; 15(12):5728–5740.
  • Wang S, Huang P, Chen X. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano. 2016;10(3):2991–2994.
  • Rymaruk MJ, Hunter SJ, O’Brien CT, et al. RAFT dispersion polymerization in silicone oil. Macromolecules. 2019;52(7):2822–2832.
  • Lee. Advanced Healthcare Materials 2013.
  • Kouser R, Vashist A, Zafaryab M, et al. pH-responsive biocompatible nanocomposite hydrogels for therapeutic drug delivery. ACS Appl Bio Mater. 2018;1(6):1810–1822.
  • Feng N, Yang M, Feng X, et al. Reduction-responsive polypeptide nanogel for intracellular drug delivery in relieving collagen-induced arthritis. ACS Biomater Sci Eng. 2018;4(12):4154–4162.
  • Chytil P, Šírová M, Kudláčová J, et al. Bloodstream stability predetermines the antitumor efficacy of micellar polymer-doxorubicin drug conjugates with pH-triggered drug release. Mol Pharm. 2018;15(9):3654–3663.
  • Zhou Z, Shen Y, Tang J, et al. Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv Funct Mater. 2009;19(22):3580–3589.
  • Shae D, Becker K, Christov WP, et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat Nanotechnol. 2019;14(3):269–278.
  • Yang D, Yang G, Gai S, et al. Multifunctional theranostics for dual-modal photodynamic synergistic therapy via stepwise water splitting. ACS Appl Mater Interfaces. 2017;9(8):6829–6838.
  • Tang W, Fan W, Wang Z, et al. Acidity/reducibility dual-responsive hollow mesoporous organosilica nanoplatforms for tumor-specific self-assembly and synergistic therapy. ACS Nano. 2018;12(12):12269–12283.
  • Wang Q, Zhang P, Xu J, et al. NIR-absorbing dye functionalized supramolecular vesicles for chemo-photothermal synergistic therapy. ACS Appl Bio Mater. 2018;1(1):70–78.
  • Wang C, Cheng L, Liu YM, et al. Imaging - guided pH - sensitive photodynamic therapy using charge reversible up conversion nano particles under near - infrared light. Adv Funct Mater. 2013; 23(24):3077– 3086.
  • Tian B, Wang C, Zhang S, et al. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano. 2011;5(9):7000–7009.
  • Liu Z, Song F, Shi W, et al. Nitroreductase-activatable theranostic molecules with high PDT efficiency under mild hypoxia based on a TADF fluorescein derivative. ACS Appl Mater Interfaces. 2019;11(17):15426–15435.
  • Yeh H-P, del Valle AC, Syu M-C, et al. A new photosensitized oxidation-responsive nanoplatform for controlled drug release and photodynamic cancer therapy. ACS Appl Mater Interfaces. 2018;10(25):21160–21172.
  • (a) Zhaoxu Meng,Liping Zhang, Zhonggui He, and He Lian. Mucosal penetrating bioconjugate coated upconverting nanoparticles that integrate biological tracking and photodynamic therapy for gastrointestinal cancer treatment. ACS Biomater Sci Eng. 2018, 4(6), 2203–2212. (b) Bin Du, Xiaosa Yan, Xiaoyu Ding, Qinghui Wang, Qian Du, TianguoXu, GuopengShen, Hanchun Yao, and Jie Zhou. Oxygen self-production red blood cell carrier system for MRI mediated cancer therapy: ferryl-hb, sonodynamic, and chemical therapy. ACS Biomater Sci Eng 2018, 4 (12), 4132–4143.
  • Gallardo - Villagrán M, et al. Photosensitizers Used in the Photodynamic Therapy of Rheumatoid Arthritis. Int J Mol Sci. 2019; 20:3339.
  • (a) Sakkarapalayam M. Mahalingam, Josue D. Ordaz, and Philip S. Low. Targeting of a photosensitizer to the mitochondrion enhances the potency of photodynamic therapy. ACS Omega. 2018, 3(6), 6066–6074. (b) Srivalleesha Mallidi, Sriram Anbil, Anne-Laure Bulin, Girgis Obaid, Megumi Ichikawa, and Tayyaba Hasan. Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy, Theranostics. 2016, 6(13), 2458–2487.
  • Levy M, Courtney CM, Chowdhury PP, et al. Assessing different reactive oxygen species as potential antibiotics: selectivity of intracellular superoxide generation using quantum dots. ACS Appl Bio Mater. 2018;1(2):529–537.
  • Chen S, Quan Y, Yu Y-L, et al. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater Sci Eng. 2017;3(3):313–321.
  • Mitra P, Dutta D, Das S, et al. Antibacterial and photocatalytic properties of ZnO-9-aminoacridine hydrochloride hydrate drug nanoconjugates. ACS Omega. 2018;3(7):7962–7970..
  • Wang J, Wang H, Wang H, et al. Nonviolent self-catabolic DNAzyme nanosponges for smart anticancer drug delivery. ACS Nano. 2019;13(5):5852–5863.
  • Liu S, Ono RJ, Yang C, et al. Dual pH-responsive shell-cleavable polycarbonate micellar nanoparticles for in vivo anticancer drug delivery. ACS Appl Mater Interfaces. 2018;10(23):19355–19364.
  • Ma Y, Wang J, Tao W, et al. Redox-responsive polyphosphoester-based micellar nanomedicines for overriding chemoresistance in breast cancer cells. ACS Appl Mater Interfaces. 2015;7(47):26315–26325.
  • Guo Q, Chang Z, Khan N, et al. Nanosizing noncrystalline and porous silica material—naturally occurring opal shale for systemic tumor targeting drug delivery. ACS Appl Mater Interfaces. 2018;10(31):25994–26004.
  • Wang J, Chen M, Li S, et al. Targeted delivery of a ligand–drug conjugate via formyl peptide receptor 1 through cholesterol-dependent endocytosis. Mol Pharmaceutics. 2019;16(6):2636–2647.
  • Gao Y, Jia L, Wang Q, et al. pH/Redox Dual-responsive polyplex with effective endosomal escape for codelivery of siRNA and doxorubicin against drug-resistant cancer cells. ACS Appl Mater Interfaces. 2019;11(18):16296–16310.
  • Xu M, Zhang C, Wu J, et al. PEG-detachable polymeric micelles self-assembled from amphiphilic copolymers for tumor-acidity-triggered drug delivery and controlled release. ACS Appl Mater Interfaces. 2019;11(6):5701–5713.
  • Deshayes S, Cabral H, Ishii T, et al. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J Am Chem Soc. 2013;135(41):15501–15507.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.