192
Views
8
CrossRef citations to date
0
Altmetric
Articles

Heparin mimics and fibroblast growth factor-2 fabricated nanogold composite in promoting neural differentiation of mouse embryonic stem cells

, , , , , & show all
Pages 1623-1647 | Received 20 Feb 2020, Accepted 07 May 2020, Published online: 27 May 2020

References

  • Zhang S-C, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001;19(12):1129–1133.
  • Akhavan O. Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J Mater Chem B. 2016;4(19):3169–3190.
  • Hettiaratchi MH, Guldberg RE, McDevitt TC. Biomaterial strategies for controlling stem cell fate via morphogen sequestration. J Mater Chem B. 2016;4(20):3464–3481.
  • Johnson CE, Crawford BE, Stavridis M, et al. Essential alterations of heparan sulfate during the differentiation of embryonic stem cells to Sox1-enhanced green fluorescent protein-expressing neural progenitor cells. Stem Cells. 2007;25(8):1913–1923.
  • Kraushaar Daniel C, Dalton S, Wang L. Heparan sulfate: a key regulator of embryonic stem cell fate. Biol Chem. 2013;394(6):741–751.
  • Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 2005;287(2):390–402.
  • Kapur TA, Shoichet MS. Chemically-bound nerve growth factor for neural tissue engineering applications. J Biomater Sci Polym Ed. 2003;14(4):383–394.
  • Park S-J, Kim S, Kim S-Y, et al. Highly efficient and rapid neural differentiation of mouse embryonic stem cells based on retinoic acid encapsulated porous nanoparticle. ACS Appl Mater Interfaces. 2017;9(40):34634–34640.
  • Stewart E, Kobayashi NR, Higgins MJ, et al. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng Part C Methods. 2015;21(4):385–393.
  • Hassanpour-Tamrin S, Taheri H, Mahdi Hasani-Sadrabadi M, et al. Nanoscale optoregulation of neural stem cell differentiation by intracellular alteration of redox balance. Adv Funct Mater. 2017;27(38):1701420.
  • Kochhar DM. Limb development in mouse embryos. I. Analysis of teratogenic effects of retinoic acid. Teratology. 1973;7(3):289–298.
  • Lammer EJ, Chen DT, Hoar RM, et al. Retinoic acid embryopathy. N Engl J Med. 1985;313(14):837–841.
  • Rosa FW, Wilk AL, Kelsey FO. Teratogen update: vitamin A congeners. Teratology. 1986;33(3):355–364.
  • Gu Y, Xue C, Zhu J, et al. Basic fibroblast growth factor (bFGF) facilitates differentiation of adult dorsal root ganglia-derived neural stem cells toward Schwann cells by binding to FGFR-1 through MAPK/ERK activation. J Mol Neurosci. 2014;52(4):538–551.
  • Mudò G, Bonomo A, Di Liberto V, et al. The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain. J Neural Transm (Vienna)). 2009;116(8):995–1005.
  • Guan R, Sun X-L, Hou S, et al. A glycopolymer chaperone for fibroblast growth factor-2. Bioconjug Chem. 2004;15(1):145–151.
  • Nguyen TH, Kim S-H, Decker CG, et al. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor. Nat Chem. 2013;5(3):221–227.
  • Cohen MA, Itsykson P, Reubinoff BE. The role of FGF-signaling in early neural specification of human embryonic stem cells. Dev Biol. 2010;340(2):450–458.
  • Axell MZ, Zlateva S, Curtis M. A method for rapid derivation and propagation of neural progenitors from human embryonic stem cells. J Neurosci Meth. 2009;184(2):275–284.
  • Higuchi A, Ling Q-D, Kumar SS, et al. Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells. J Mater Chem B. 2015;3(41):8032–8058.
  • Heath DE, Cooper SL. The development of polymeric biomaterials inspired by the extracellular matrix. J Biomater Sci Polym Ed. 2017;28(10–12):1051–1069.
  • Huang ML, Smith RAA, Trieger GW, et al. Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. J Am Chem Soc. 2014;136(30):10565–10568.
  • Gama CI, Hsieh-Wilson LC. Chemical approaches to deciphering the glycosaminoglycan code. Curr Opin Chem Biol. 2005;9(6):609–619.
  • Pickford CE, Holley RJ, Rushton G, et al. Specific glycosaminoglycans modulate neural specification of mouse embryonic stem cells. Stem Cells. 2011;29(4):629–640.
  • Cheng C, Sun S, Zhao C. Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. J Mater Chem B. 2014;2(44):7649–7672.
  • Ding K, Wang Y, Wang H, et al. 6-O-Sulfated chitosan promoting the neural differentiation of mouse embryonic stem cells. ACS Appl Mater Interfaces. 2014;6(22):20043–20050.
  • Wang M, Lyu Z, Chen G, et al. A new avenue to the synthesis of GAG-mimicking polymers highly promoting neural differentiation of embryonic stem cells. Chem Commun (Camb)). 2015;51(84):15434–15437.
  • Paluck SJ, Maynard HD. Structure activity relationship of heparin mimicking polymer p(SS-co-PEGMA): effect of sulfonation and polymer size on FGF2-receptor binding. Polym Chem. 2017;8(31):4548–4556.
  • Paluck SJ, Nguyen TH, Maynard HD. Heparin-mimicking polymers: synthesis and biological applications. Biomacromolecules. 2016;17(11):3417–3440.
  • Lyu Z, Shi X, Lei J, et al. Promoting neural differentiation of embryonic stem cells using β-cyclodextrin sulfonate. J Mater Chem B. 2017;5(10):1896–1900.
  • Lei J, Yuan Y, Lyu Z, et al. Deciphering the role of sulfonated unit in heparin-mimicking polymer to promote neural differentiation of embryonic stem cells. ACS Appl Mater Interfaces. 2017;9(34):28209–28221.
  • Sakiyama-Elbert SE. Incorporation of heparin into biomaterials. Acta Biomater. 2014;10(4):1581–1587.
  • Skop NB, Calderon F, Levison SW, et al. Heparin crosslinked chitosan microspheres for the delivery of neural stem cells and growth factors for central nervous system repair. Acta Biomater. 2013;9(6):6834–6843.
  • Galderisi U, Peluso G, Di Bernardo G, et al. Efficient cultivation of neural stem cells with controlled delivery of FGF-2. Stem Cell Res. 2013;10(1):85–94.
  • Yi DK, Nanda SS, Kim K, et al. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J Mater Chem B. 2017;5(48):9429–9451.
  • Liu F, Wang L, Wang H, et al. Modulating the activity of protein conjugated to gold nanoparticles by site-directed orientation and surface density of bound protein. ACS Appl Mater Interfaces. 2015;7(6):3717–3724.
  • Li M, Li Y, Huang X, et al. Captopril-polyethyleneimine conjugate modified gold nanoparticles for co-delivery of drug and gene in anti-angiogenesis breast cancer therapy. J Biomater Sci Polym Ed. 2015;26(13):813–827.
  • Carnovale C, Bryant G, Shukla R, et al. Size, shape and surface chemistry of nano-gold dictate its cellular interactions, uptake and toxicity. Prog Mater Sci. 2016;83:152–190.
  • Ashraf S, Pelaz B, del Pino P, et al. Gold-based nanomaterials for applications in nanomedicine. Top Curr Chem. 2016;370:169–202.
  • Kan M, Wang F, Xu J, et al. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science. 1993;259(5103):1918–1921.
  • Pellegrini L, Burke DF, von Delft F, et al. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000;407(6807):1029–1034.
  • Casals E, Pfaller T, Duschl A, et al. Time evolution of the nanoparticle protein Corona. ACS Nano. 2010;4(7):3623–3632.
  • Albanese A, Chan W. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano. 2011;5(7):5478–5489.
  • Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci Usa. 2007;104(7):2050–2055.
  • Walczyk D, Bombelli FB, Monopoli MP, et al. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010;132(16):5761–5768.
  • Liu F, Cui Y, Wang L, et al. Temperature-responsive poly(N-isopropylacrylamide) modified gold nanoparticle–protein conjugates for bioactivity modulation. ACS Appl Mater Interfaces. 2015;7(21):11547–11554.
  • Furue MK, Na J, Jackson JP, et al. Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Nat Acad Sci USA. 2008;105(36):13409–13414.
  • Mimura S, Kimura N, Hirata M, et al. Growth factor-defined culture medium for human mesenchymal stem cells. Int J Dev Biol. 2011;55(2):181–187.
  • Dvorak P, Dvorakova D, Koskova S, et al. Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells. 2005;23(8):1200–1211.
  • Granato AM, Nanni O, Falcini F, et al. Basic fibroblast growth factor and vascular endothelial growth factor serum levels in breast cancer patients and healthy women: useful as diagnostic tools? Breast Cancer Res. 2003;6(1):R38.
  • Eiselleova L, Matulka K, Kriz V, et al. A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells. 2009;27(8):1847–1857.
  • Lee J-H, Um S, Jang J-H, et al. Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res. 2012;348(3):475–484.
  • Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–327.
  • Shukla R, Bansal V, Chaudhary M, et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21(23):10644–10654.
  • Stefanovic S, Pucéat M. Oct-3/4: not just a gatekeeper of pluripotency for embryonic stem cell, a cell fate instructor through a gene dosage effect. Cell Cycle. 2007;6(1):8–10.
  • Rathjen J, Haines BP, Hudson KM, et al. Directed differentiation of pluripotent cells to neural lineages: homogeneous formation and differentiation of a neurectoderm population. Development. 2002;129(11):2649–2661.
  • Lee J, Go Y, Kang I, et al. Oct-4 controls cell-cycle progression of embryonic stem cells. Biochem J. 2010;426(2):171–181.
  • Greber B, Coulon P, Zhang M, et al. FGF signalling inhibits neural induction in human embryonic stem cells. Embo J. 2011;30(24):4874–4884.
  • Friedl A, Chang Z, Tierney A, et al. Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues. Am J Pathol. 1997;150(4):1443–1455.
  • Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–253.
  • Mimura S, Suga M, Liu Y, et al. Synergistic effects of FGF-2 and Activin A on early neural differentiation of human pluripotent stem cells. In Vitro Cell Dev Biol Anim. 2015;51(8):769–775.
  • Funa NS, Saldeen J, Åkerblom B, et al. Interdependent fibroblast growth factor and activin A signaling promotes the expression of endodermal genes in differentiating mouse embryonic stem cells expressing Src Homology 2-domain inactive Shb. Differentiation. 2008;76(5):443–453.
  • Shiraki N, Yoshida T, Araki K, et al. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells. 2008;26(4):874–885.
  • Yu P, Pan G, Yu J, et al. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell. 2011;8(3):326–334.
  • Kraushaar DC, Rai S, Condac E, et al. Heparan sulfate facilitates FGF and BMP signaling to drive mesoderm differentiation of mouse embryonic stem cells. J Biol Chem. 2012;287(27):22691–22700.
  • Lo N-W, Intawicha P, Chiu Y-T, et al. Leukemia inhibitory factor and fibroblast growth factor 2 critically and mutually sustain pluripotency of rabbit embryonic stem cells. Cell Transplant. 2015;24(3):319–338.
  • Higuchi A, Kumar S, Ling Q-D, et al. Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Prog Polym Sci. 2017;65:83–126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.