581
Views
23
CrossRef citations to date
0
Altmetric
Articles

Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering

ORCID Icon, , , & ORCID Icon
Pages 1648-1670 | Received 03 Jul 2019, Accepted 12 May 2020, Published online: 07 Jun 2020

References

  • Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today (Kidlington). 2013;16(6):229–241.[https://doi.org/25125992]
  • Lou T, Wang X, Song G, et al. Structure and properties of PLLA/b-TCP nanocomposite scaffolds for bone tissue engineering. J Mater Sci. 2015;26:1–7.
  • KenryLim CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci. 2017;70:1–17.
  • Liu X, Smith LA, Hu J, et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials. 2009;30(12):2252–2258.
  • Lin J, Wang X, Ding B, et al. Biomimicry via electrospinning. Crit Rev Solid State Mater Sci. 2012;37(2):94–114.
  • Shao J, Tong L, Tang S, et al. PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. ACS Appl Mater Interfaces. 2015;7(9):5391–5399.
  • Cui W, Jin Y, Zhu X, et al. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules. 2008;9(7):1795–1801.
  • Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11(8):1165–1188.
  • Ranjbar-Mohammadi M, Bahrami SH. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Int J Biol Macromol. 2016;84:448–456.
  • Gupta D, Venugopal J, Prabhakaran MP, et al. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater. 2009;5(7):2560–2569.
  • Corey JM, Lin DY, Mycek KB, et al. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res. 2007;83A(3):636–645.
  • Nam J, Huang Y, Agarwal S, et al. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007;13(9):2249–2257.
  • Wu J, Huang C, Liu W, et al. Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning. J Biomed Nanotechnol. 2014;10(4):603–614.
  • Jordan AM, Viswanath V, Kim SE, et al. Processing and surface modification of polymer nanofibers for biological scaffolds: a review. J Mater Chem B. 2016;4(36):5958–5974.
  • Taghavian H, Ranaei-Siadat S-O, Kalaee MR, et al. Investigation of the effects of starch on the physical and biological properties of polyacrylamide (PAAm)/starch nanofibers. Prog Biomater. 2017;6(3):85–96.
  • Sreerekha PR, Menon D, Nair SV, et al. Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications. J Biomed Nanotechnol. 2013;9(5):790–800.
  • Zhang Y, Ouyang H, Chwee TL, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Part B Appl Biomater. 2005;72(1):156–165.
  • Alves Da Silva ML, Martins A, Costa-Pinto AR, et al. Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules. 2010;11(12):3228–3236.
  • Cho SJ, Jung SM, Kang M, et al. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b- PCL block copolymers for enhanced cell biocompatibility. Polymer. 2015;69:95–102.
  • Kashte S, Arbade G, Sharma RK, et al. Herbally painted biofunctional scaffolds with improved osteoinductivity for bone tissue engineering. JBBBE. 2019;41:49–68.
  • Arbade GK, Patro TU. Biocompatible polymer based nanofibers for tissue engineering. In: Advances in Sustainable Polymers Processing and Applications. Katiyar et al., editors. Singapore: Springer; 2019. p. 43–66. DOI: 10.1007/978-981-32-9804-0.
  • Ye M, Mohanty P, Ghosh G. Morphology and properties of poly vinyl alcohol (PVA) scaffolds: impact of process variables. Mater Sci Eng C. 2014;42:289–294.
  • Zhou X, Wei D, Ye H, et al. Development of poly(vinyl alcohol) porous scaffold with high strength and well cipro floxacin release efficiency. Mater Sci Eng C. 2016;67:326–335.
  • Tillman BW, Yazdani SK, Lee SJ, et al. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials. 2009;30(4):583–588.
  • Bean AC, Tuan RS. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomed Mater. 2015;10(1):015018.
  • Sell SA, McClure MJ, Garg K, et al. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev. 2009;61(12):1007–1019.
  • Xian J, Ling L, Liau L, et al. Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regen Med. 2017;14(6):699–718.
  • Hiep NT, Khon HC, Hai ND, et al. Fabrication of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications Publisher: Taylor & Francis engineering applications. J Biomater Sci Polym Ed. 2017;5063:0–1.
  • Ru C, Wang F, Pang M, et al. Suspended, shrinkage-free, electrospun PLGA nanofibrous scaffold for skin tissue engineering. ACS Appl Mater Interfaces. 2015;7(20):10872–10877. Suspended,
  • Liu H, Wang S, Qi N. Controllable structure, properties, and degradation of the electrospun PLGA/PLA-blended nanofibrous scaffolds. J Appl Polym Sci. 2012;125(S2):E468–476.
  • Radhakrishnan J, Krishnan UM, Sethuraman S. Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv. 2014;32(2):449–461.
  • Souza PMS, Morales AR, Marin-Morales MA, et al. PLA and montmorilonite nanocomposites: properties, biodegradation and potential toxicity. J Polym Environ. 2013;21(3):738–759.
  • Ma G, Fang D, Liu Y, et al. Electrospun sodium alginate/poly(ethylene oxide) core-shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr Polym. 2012;87(1):737–743.
  • Jeong SI, Krebs MD, Bonino CA, et al. Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol Biosci. 2010;10(8):934–943.
  • Cipitria A, Skelton A, Dargaville TR, et al. Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem. 2011;21(26):9419–9453.,
  • Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832–864.
  • Mondal D, Griffith M, Venkatraman SS. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater Polym Biomater. 2016;65(5):255–265.
  • Arbade GK, Jathar S, Tripathi V, et al. Antibacterial, sustained drug release and biocompatibility studies of electrospun poly(ε-caprolactone)/chloramphenicol blend nanofiber scaffolds. Biomed Phys Eng Express. 2018;4(4):045011.
  • Ahmad A, Boggs E, Patel MR, et al. Surface modification of electrospun polycaprolactone fibers and effect on cell proliferation. Surf Innov. 2014;2(1):47–59.
  • Fee T, Surianarayanan S, Downs C, et al. Nanofiber alignment regulates NIH3T3 cell orientation and cytoskeletal gene expression on electrospun PCL + gelatin nanofibers. PLoS One. 2016;11(5):e0154806
  • He M, Jiang H, Wang R, et al. Fabrication of metronidazole loaded poly (ε-caprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration. J Colloid Interface Sci. 2017;490:270–278.
  • Tiwari AP, Joshi MK, Lee J, et al. Heterogeneous electrospun polycaprolactone/polyethylene glycol membranes with improved wettability, biocompatibility, and mineralization. Colloids Surfaces A Physicochem Eng ASP. 2017;520:105–113.
  • Abedalwafa M, Wang F, Wang L, et al. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci. 2013;34:123–140.
  • Gautam S, Dinda AK, Mishra NC. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C. 2013;33(3):1228–1235.
  • Pajoumshariati S, Yavari SK, Shokrgozar MA. Physical and biological modification of polycaprolactone electrospun nanofiber by panax ginseng extract for bone tissue engineering application. Ann Biomed Eng. 2016;44(5):1808–1820.
  • Bolaina-Lorenzo E, Martinez-Ramos C, Monleón-Pradas M, et al. Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: Physicochemical characterization and Schwann cell biocompatibility. Biomed Mater. 2016;12(1):015008.
  • Wang Y, Guo G, Chen HF, et al. Preparation and characterization of polylactide/poly(ε-caprolactone) hybrid fibers for potential application in bone tissue engineering. Int J Nanomed. 2014;9:1991–2003.
  • Lobo AO, Afewerki S, Paula MM, De, et al. Electrospun nanofiber blend with improved mechanical and biological performance. IJN. 2018;13:7891–7903.
  • Remya KR, Chandran S, Mani S, et al. Hybrid polycaprolactone/polyethylene oxide scaffolds with tunable fiber surface morphology, improved hydrophilicity and biodegradability for bone tissue engineering applications. J Biomater Sci Polym Ed. 2018;29(12):1444–1462.
  • Patel HN, Thai KN, Chowdhury S, et al. In vitro degradation and cell attachment studies of a new electrospun polymeric tubular graft. Prog Biomater. 2015;4(2-4):67–76.
  • Gao J, Chen S, Tang D, et al. Mechanical properties and degradability of electrospun PCL/PLGA blended scaffolds as vascular grafts. Trans Tianjin Univ. 2019;25(2):152–159.
  • Kim G-M, Le KHT, Giannitelli SM, et al. Electrospinning of PCL/PVP blends for tissue engineering scaffolds. J Mater Sci Mater Med. 2013;24(6):1425–1442.
  • Alvarez-Perez MA, Guarino V, Cirillo V, et al. Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromolecules. 2010;11(9):2238–2246.,
  • Pant HR, Neupane MP, Pant B, et al. Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids Surf B Biointerfaces. 2011;88(2):587–592.
  • Michelle M, De-paula M, Afewerki S, et al. Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. Mater Sci Eng C. 2019;103:1–9.
  • Siri S, G, Kaewjumpol YT, et al. Single and composite electrospun PCL and PLCG fibers and their biological properties. Int J Electrospun Nanofibers Appl. 2017;1:29–40.
  • Baker BM, Gee AO, Metter RB, et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 2008;29(15):2348–2358.
  • Hackett JM, Dang TNT, Tsai EC, et al. Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation. Materials. 2010;3(6):3714–3728.
  • Yang F, Miao Y, Wang Y, et al. Electrospun zein/gelatin scaffold-enhanced cell ligament stem cells. Materials. 2017;10(10):1168–1114.,
  • Jauregui C, Yoganarasimha S, Madurantakam P. Mesenchymal stem cells derived from healthy and diseased human gingiva support osteogenesis on electrospun polycaprolactone scaffolds. Bioengineering. 2018;5(1):8.
  • Hiep NT, Lee BT. Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci Mater Med. 2010;21(6):1969–1978.
  • De Paula MMM, Bassous NJ, Afewerki S, et al. Understanding the impact of crosslinked PCL/PEG/GelMA electrospun nanofibers on bactericidal activity. PLoS One. 2018;13(12):e0209386–19.
  • Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. 2006;12:301–347.
  • Miller RA, Brady JM, Cutright DE. Degradation rates of oral resorbable implants (polylactates and polyglycolates): Rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res. 1977;11(5):711–719.
  • Kikuchi M, Koyama Y, Yamada T, et al. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites. Biomaterials. 2004;25(28):5979–5986.
  • Park JH, Kang HJ, Kwon DY, et al. Biodegradable poly(lactide-co-glycolide-co-e- caprolactone) block copolymers – evaluation as drug carriers for a localized and sustained delivery system. J Mater Chem B. 2015;3(41):8143–8153.
  • Zhou Z, Zhou Z, Liu W, et al. Preparation and degradation behaviors of poly (L-butanediamine modified poly(lactic-co-glycolic acid) blend film preparation and degradation behaviors of poly(L-lactide. J Macromol Sci Part B. 2020;0:1–11.
  • Chou SF, Woodrow KA. Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater. 2017;65:724–733.
  • Pamula E, Kokoszka J, Cholewa-Kowalska K, et al. Degradation, bioactivity, and osteogenic potential of composites made of PLGA and two different sol-gel bioactive glasses. Ann Biomed Eng. 2011;39(8):2114–2129.
  • Maurmann N, Pereira DP, Burguez D, et al. Mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices, coated with PLGA electrospun nanofibers for use in tissue engineering Mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices, coated with PLGA el. Biomed Phys Eng Express. 2017;3:1–16.
  • Wang Y, Blasioli DJ, Kim HJ, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials. 2006;27(25):4434–4442.
  • Rajendran A, Kapoor U, Jothinarayanan N, et al. Effect of silver-containing titania layers for bioactivity, antibacterial activity, and osteogenic di ff erentiation of human mesenchymal stem cells on Ti metal. ACS Appl Bio Mater. 2019;2(9):3808–3819.
  • Liverani L, Boccaccini A. Versatile Production of poly(epsilon-caprolactone) fibers by electrospinning using benign solvents. Nanomaterials. 2016;6(4):75.
  • Crescenzi V, Manzini G, Calzolari G, et al. Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J. 1972;8(3):449–463.
  • Xie J, Macewan MR, Liu W, et al. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces. 2014;6(12):9472–9480.
  • Ku SH, Park CB. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials. 2010;31(36):9431–9437.
  • Pham QP, Sharma U, Mikos AG. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7(10):2796–2805.
  • Wu J, Hong Y. Enhancing cell in filtration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater. 2016;1(1):56–64.
  • Verma SK, Modi A, Singh AK, et al. Functionally coated polyethersulfone hollow fiber membranes: a substrate for enhanced HepG2/C3A functions. Colloids Surf B Biointerfaces. 2018;164:358–369.
  • Elamparithi A, Punnoose AM, Kuruvilla S, et al. Electrospun polycaprolactone matrices with tensile properties suitable for soft tissue engineering. Artif Cells Nanomed Biotechnol. 2016;44(3):878–884. DOI: 10.3109/21691401.2014.998825
  • Li WJ, Mauck RL, Cooper JA, et al. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech. 2007;40(8):1686–1693.
  • Johnson J, Niehaus A, Nichols S, et al. Electrospun PCL in vitro: a microstructural basis for mechanical property changes. J Biomater Sci Polym Ed. 2009;20(4):467–481.
  • Chakrapani VY, Gnanamani A, Giridev VR, et al. Electrospinning of type I collagen and PCL nanofibers using acetic acid. J Appl Polym Sci. 2012;125(4):3221–3237.
  • Sharma S, Mohanty S, Gupta D, et al. Cellular response of limbal epithelial cells on electrospun poly-ε- caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Mol Vis. 2011;17:2898–2910.
  • Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–689.
  • Zaman MH, Trapani LM, Siemeski A, et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci USA. 2006;103(29):10889–10894.
  • Saha K, Keung AJ, Irwin EF, et al. Substrate modulus directs neural stem cell behavior. Biophys J. 2008;95(9):4426–4438.
  • Hu J, Prabhakaran MP, Tian L, et al. Drug-loaded emulsion electrospun nanofibers: characterization, drug release andin vitro biocompatibility. RSC Adv. 2015;5(121):100256–100267.
  • Hwang PTJ, Murdock K, Alexander GC, et al. Poly(ε-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering. J Biomed Mater Res. 2016;104(4):1017–1029.
  • Qi R, Cao X, Shen M, et al. Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers biocompatibility of electrospun halloysite nanotube-doped. J Biomater Sci. 2015;5063:37–41.
  • Mitra J, Tripathi G, Sharma A, et al. Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. RSC Adv. 2013;3(28):11073–11094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.