210
Views
8
CrossRef citations to date
0
Altmetric
Articles

Development and physicochemical analysis of genipin-crosslinked gelatine sponge as a potential resorbable nasal pack

, , , & ORCID Icon
Pages 1722-1740 | Received 10 Mar 2020, Accepted 24 May 2020, Published online: 12 Jun 2020

References

  • Fokkens WJ, Lund VJ, Mullol J, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50(1):1–12.
  • Selvarajah J, Saim AB, Bt Hj Idrus R, et al. Current and alternative therapies for nasal mucosa injury: a review. Int J Mol Sci. 2020;21(2):480.
  • Akiyama K, Karaki M, Yonezaki M, et al. Usefulness of nasal packing with silver-containing carboxy methylated cellulose in endonasal sinus surgery. Auris Nasus Larynx. 2014;41(3):264–268.
  • Bernardo MT, Alves S, Lima NB, et al. Septoplasty with or without postoperative nasal packing? Prospective study. Braz J Otorhinolaryngol. 2013;79(4):471–474.
  • Wang J, Cai C, Wang S. Merocel versus Nasopore for nasal packing: A meta-analysis of randomized controlled trials. PLoS One. 2014;9(4):e93959.
  • Faistauer M, Faistauer Â, Grossi RS, et al. Clinical outcome of patients with epistaxis treated with nasal packing after hospital discharge. Braz J Otorhinolaryngol. 2009;75(6):857–865.
  • Berlucchi M, Castelnuovo P, Vincenzi A, et al. Endoscopic outcomes of resorbable nasal packing after functional endoscopic sinus surgery: a multicenter prospective randomized controlled study. Eur Arch Otorhinolaryngol. 2009;266(6):839–845.
  • Massey CJ, Singh A. Advances in absorbable biomaterials and nasal packing. Otolaryngol Clin North Am. 2017;50(3):545–563.
  • Cassano M, Di Taranto F, Russo GM, et al. Cytological alterations of nasal mucosa after nasal packing. Am J Otolaryngol Head Neck Med Surg. 2014;35(3):366–372.
  • Piski Z, Gerlinger I, Nepp N, et al. Clinical benefits of polyurethane nasal packing in endoscopic sinus surgery. Eur Arch Otorhinolaryngol. 2017;274(3):1449–1454.
  • Jang SY, Lee KH, Lee SY, et al. Effects of Nasopore packing on dacryocystorhinostomy. Korean J Ophthalmol. 2013;27(2):73–80.
  • Yan M, Zheng D, Li Y, et al. Biodegradable nasal packings for endoscopic sinonasal surgery: a systematic review and meta-analysis. PLoS One. 2014;9(12):e115458.
  • McIntosh D, Cowin A, Adams D, et al. The effect of an expandable polyvinyl acetate (Merocel) pack on the healing of the nasal mucosa of sheep. Am J Rhinol. 2005;19(6):577–581.
  • Cho KS, Shin SK, Lee JH, et al. The efficacy of Cutanplast nasal packing after endoscopic sinus surgery: a prospective, randomized, controlled trial. Laryngoscope. 2013;123(3):564–568.
  • Busra MF, Lokanathan Y. Recent development in the fabrication of collagen scaffolds for tissue engineering applications: a review. Curr Pharm Biotechnol. 2019;20(12):992–1003.
  • Chowdhury SR, Busra MF, Lokanathan Y, et al. Collagen type I: a versatile biomaterial. In: Chun H, Park K, Kim CH, Khang G, editors. Novel biomaterials for regenerative medicine. Singapore: Springer; 2018. p. 389–414.
  • Mariod AA, Adam HF. Gelatine, source, extraction and industrial applications. Acta Sci Pol. 2013;12(2):135–147.
  • Kaintura R, Sharma P, Singh S, et al. Gelatine nanoparticles as a delivery system for proteins. J Nanomed Res. 2015;2(1):2–4.
  • Rose JB, Pacelli S, El Haj AJ, et al. Gelatin-based materials in ocular tissue engineering. Materials. 2014;7(4):3106–3135.
  • Gobinathan S, Zainol SS, Azizi SF, et al. Decellularization and genipin crosslinking of amniotic membrane suitable for tissue engineering applications. J Biomater Sci Polym Ed. 2018;29(17):2051–2067.
  • Busra FM, Lokanathan Y, Nadzir MM, et al. Attachment, proliferation, and morphological properties of human dermal fibroblasts on ovine tendon collagen scaffolds: a comparative study. Malays J Med Sci. 2017;24(2):33–43.
  • Young S, Wong M, Tabata Y, et al. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109(1-3):256–274.
  • Jridi M, Sellimi S, Lassoued KB, et al. Wound healing activity of cuttlefish gelatine gels and films enriched by henna (Lawsonia inermis) extract. Colloids Surf A: Physicochem Eng Asp. 2017;512:71–79.
  • Etxabide A, Vairo C, Santos-Vizcaino E, et al. Ultra thin hydro-films based on lactose-crosslinked fish gelatin for wound healing applications. Int J Pharm. 2017;530(1-2):455–467.
  • Jiang Q, Xu H, Cai S, et al. Ultrafine fibrous gelatin scaffolds with deep cell infiltration mimicking 3D ECMs for soft tissue repair. J Mater Sci Mater Med. 2014;25(7):1789–1800.
  • Contessi Negrini N, Bonnetier M, Giatsidis G, et al. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater. 2019;87:61–75.
  • Kim S, Nimni ME, Yang Z, et al. Chitosan/gelatin-based films crosslinked by proanthocyanidin. J Biomed Mater Res B: Appl Biomater. 2005;75(2):442–450.
  • Pilipchuk SP, Vaicik MK, Larson JC, et al. Influence of crosslinking on the stiffness and degradation of dermis-derived hydrogels. J Biomed Mater Res A. 2013;101(10):2883–2895.
  • Mirzaei E, Faridi-Majidi R, Shokrgozar MA, et al. Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold. Int J Nanomed. 2014;1:137–146.
  • Yoo JS, Kim YJ, Kim SH, et al. Study on genipin: a new alternative natural crosslinking agent for fixing heterograft tissue. Korean J Thorac Cardiovasc Surg. 2011;44(3):197–207.
  • Muzzarelli RA, El Mehtedi M, Bottegoni C, et al. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs. 2015;13(12):7314–7338.
  • Yang G, Xiao Z, Long H, et al. Assessment of the characteristics and biocompatibility of gelatine sponge scaffolds prepared by various crosslinking methods. Sci Rep. 2018;8(1):1–13.
  • Manickam B, Sreedharan R, Elumalai M. ‘Genipin’ – the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an overview. Curr Drug Deliv. 2014;11(1):139–145.
  • Gattazzo F, De Maria C, Rimessi A, et al. Gelatin-genipin-based biomaterials for skeletal muscle tissue engineering. J Biomed Mater Res B: Appl Biomater. 2018;106(8):2763–2777.
  • Chiesa I, De Maria C, Lapomarda A, et al. Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting. Biofabrication. 2020;12(2):025013.
  • Koo HJ, Song YS, Kim HJ, et al. Antiinflammatory effects of genipin, an active principle of gardenia. Eur J Pharmacol. 2004;495(2–3):201–208.
  • Pinheiro A, Cooley A, Liao J, et al. Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage. J Orthop Res. 2016;34(6):1037–1046.
  • Lien SM, Li WT, Huang TJ. Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Mater Sci Eng: C. 2008;28(1):36–43.
  • Zhang X, Chen X, Yang T, et al. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation. Cell Tissue Bank. 2014;15(4):531–541.
  • Yuan J-J, Mykhaylyk OO, Ryan AJ, et al. Cross-linking of cationic block copolymer micelles by silica deposition. J Am Chem Soc. 2007;129(6):1717–1723.
  • Lee SB, Kim YH, Chong MS, et al. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26(14):1961–1968.
  • ASTM Standard E96-00. Standard test methods for water vapour transmission of materials. Vol. 4.06, Annual Book of American Society for Testing Materials (ASTM) Standards; 2000.
  • Kanokpanont S, Damrongsakkul S, Ratanavaraporn J, et al. An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing. Int J Pharm. 2012;436(1–2):141–153.
  • Lamour G, Hamraoui A, Buvailo A, et al. Contact angle measurements using a simplified experimental setup. J Chem Educ. 2010;87(12):1403–1407.
  • Hajosch R, Suckfuell M, Oesser S, et al. A novel gelatine sponge for accelerated hemostasis. J Biomed Mater Res B: Appl Biomater. 2010;94(2):372–379.
  • Eichhorn SJ, Sampson WW. Relationships between specific surface area and pore size in electrospun polymer fibre networks. J R Soc Interface. 2010;7(45):641–649.
  • Ye S, Jiang L, Su C, et al. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. Int J Biol Macromol. 2019;133:148–155.
  • Kulig KM, Vacanti JP. Hepatic tissue engineering. Transpl Immunol. 2004;12(3–4):303–310.
  • She Z, Zhang B, Jin C, et al. Preparation and in vitro degradation of porous three-dimensional silk fibroin/chitosan scaffold. Polym Degrad Stab. 2008;93(7):1316–1322.
  • Kabiri K, Zohuriaan-Mehr MJ. Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol Mater Eng. 2004;289(7):653–661.
  • Kabiri K, Omidian H, Hashemi SA, et al. Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J. 2003;39(7):1341–1348.
  • Athanasiadis T, Beule AG, Wormald PJ. Effects of topical antifibrinolytics in endoscopic sinus surgery: a pilot randomized controlled trial. Am J Rhinol. 2007;21(6):737–742.
  • Wormald PJ, Boustred RN, Le T, et al. A prospective single-blind randomized controlled study of use of hyaluronic acid nasal packs in patients after endoscopic sinus surgery. Am J Rhinol. 2006;20(1):7–10.
  • Wee JH, Lee CH, Rhee CS, et al. Comparison between Gelfoam packing and no packing after endoscopic sinus surgery in the same patients. Eur Arch Otorhinolaryngol. 2012;269(3):897–903.
  • Watelet JB, Bachert C, Gevaert P, et al. Wound healing of the nasal and paranasal mucosa: a review. Am J Rhinol. 2002;16(2):77–84.
  • Dhivya S, Padma VV, Santhini E. Wound dressings – a review. Biomedicine. 2015;5(4):22.
  • Patel S, Srivastava S, Singh MR, et al. Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. Int J Biol Macromol. 2018;107(Pt B):1888–1897.
  • Mu C, Zhang K, Lin W, et al. Ring-opening polymerization of genipin and its long-range crosslinking effect on collagen hydrogel. J Biomed Mater Res A. 2013;101(2):385–393.
  • Muhammad Mior Amirul A, Mohd Heikal M, Busra FM. Genipin-crosslinked gelatin scaffold in tissue engineering: a systematic review. Med Health. 2019;14(2):1–16.
  • Qiu J, Li J, Wang G, et al. In vitro investigation on the biodegradability and biocompatibility of genipin cross-linked porcine acellular dermal matrix with intrinsic fluorescence. ACS Appl Mater Interfaces. 2013;5(2):344–350.
  • Chen KY, Liao WJ, Kuo SM, et al. Asymmetric chitosan membrane containing collagen I nanospheres for skin tissue engineering. Biomacromolecules. 2009;10(6):1642–1649.
  • Yan LP, Wang YJ, Ren L, et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res A. 2010;95(2):465–475.
  • Xing Q, Yates K, Vogt C, et al. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep. 2014;4:4706.
  • Butler MF, Ng YF, Pudney PD. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci A: Polym Chem. 2003 41(24):3941–3953.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.