80
Views
2
CrossRef citations to date
0
Altmetric
Articles

Two new Cu(II)-based coordination polymers: inhibitory activity on prostate cancer by reducing EGF-R expression and HIPPO signaling pathway activation

, &
Pages 1741-1755 | Received 17 Mar 2020, Accepted 25 May 2020, Published online: 12 Jun 2020

References

  • Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017; 9:52.
  • Normanno N, Luca AD, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366(1):2–16.
  • Jung KH, Lee EJ, Park JW, et al. EGF receptor stimulation shifts breast cancer cell glucose metabolism toward glycolytic flux through PI3 kinase signaling. PLoS One. 2019;14(9):e0221294.
  • Barrett CSX, Millena AC, Khan SA. TGF-β effects on prostate cancer cell migration and invasion require FosB. Prostate. 2017;77(1):72–81.
  • Wang Z. ErbB receptors and cancer. Methods Mol Biol. 2017; 1652:3–35.
  • Chen J, Harris RC. Interaction of the EGF receptor and the hippo pathway in the diabetic kidney. J Am Soc Nephrol. 2016;27(6):1689–1700.
  • Feng X, Ling XL, Liu L, et al. A series of 3D lanthanide frameworks constructed from aromatic multi-carboxylate ligand: Structural diversity, luminescence and magnetic properties. Dalton Trans. 2013;42(28):10292–10303.
  • Feng X, Guo N, Chen HP, et al. A series of anionic host coordination polymers based on azoxybenzene carboxylate: structures, luminescence and magnetic properties. Dalton Trans. 2017;46(41):14192–14200.
  • Feng X, Shang YP, Zhang H, et al. Enhanced luminescence and tunable magnetic properties of lanthanide coordination polymers based on fluorine substitution and phenanthroline ligand. RSC Adv. 2019;9(29):16328–16338.
  • Feng X, Liu J, Li J, et al. Series of coordination-polymers based on 4-(5-sulfo-quinolin-8-yloxy) phthalate and bipyridinyl co-ligands: structure diversity and properties. Solid State Chem. 2015;230:80–236.
  • Liu W, Li H, Zhu H, et al. The interfacial adhesion performance and mechanism of a modified asphalt–steel slag aggregate. Materials. 2020;13(5):1180.
  • Wang Z, Zhang X, Jiang S, et al. Arc erosion dynamic of island-and skeleton-restricted microstructure evolution modes in Ag–CuO contact materials. J Alloy Compd. 2020; 828:154412.
  • Koner R, Goldberg I. The coordination polymers poly[mu-4,4'-bipyridyl-di-mu-formato-copper(II)] and catena-poly[[[diaqua(1-benzofuran-2,3-dicarboxylato)copper(II)]-mu-1,2-di-4-pyridylethane] dihydrate]. Acta Crystallogr C. 2009;65(Pt 5):m185–m189.
  • Xu Y, Meng J, Meng L, et al. A highly selective fluorescence-based polymer sensor incorporating an (R,R)-salen moiety for Zn(2+) detection. Chemistry. 2010;16(43):12898–12903.
  • Yuan G, Zhang C, Shao KZ, et al. A series of lanthanide coordination polymers based on flexible bis-(imidazole-4,5-dicarboxylate) ligand: syntheses, structures and fluorescent properties. Inorg Chem Commun. 2019; 99:126–130.
  • Raja DS, Bhuvanesh NSP, Natarajan K. A novel water soluble ligand bridged cobalt(II) coordination polymer of 2-oxo-1,2-dihydroquinoline-3-carbaldehyde (isonicotinic) hydrazone: evaluation of the DNA binding, protein interaction, radical scavenging and anticancer activity . Dalton Trans. 2012;41(15):4365–4377.
  • Spokoyny AM, Kim D, Sumrein A, et al. Infinite coordination polymer nano- and microparticle structures. Chem Soc Rev. 2009;38(5):1218–1227.
  • Wang K, Ma X, Shao D, et al. Coordination-induced assembly of coordination polymer submicrospheres: promising antibacterial and in vitro anticancer activities. Cryst Growth Des. 2012;12(7):3786–3791.
  • Chen N, Li MX, Yang P, et al. Chiral coordination polymers with SHG-active and luminescence: an unusual homochiral 3D MOF constructed from achiral components. Cryst Growth Des. 2013;13(6):2650–2660.
  • Wen T, Zhang DX, Liu J, et al. A multifunctional helical Cu(I) coordination polymer with mechanochromic, sensing and photocatalytic properties. Chem Commun (Camb). 2013;49(50):5660–5662.
  • Qin L, Hu JS, Li YZ, et al. Three new coordination polymers based on one reduced symmetry tripodal Linker. Cryst Growth Des. 2011;11(7):3115–3121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.