969
Views
18
CrossRef citations to date
0
Altmetric
Articles

Mechanical strong stretchable conductive multi-stimuli-responsive nanocomposite double network hydrogel as biosensor and actuator

, , , , &
Pages 1770-1792 | Received 13 Oct 2019, Accepted 26 May 2020, Published online: 10 Jun 2020

References

  • Guragain S, Bastakoti BP, Malgras V, et al. Multi-stimuli-responsive polymeric materials. Chemistry. 2015;21(38):13164–13174.
  • Miyamoto N, Shintate M, Ikeda S, et al. Liquid crystalline inorganic nanosheets for facile synthesis of polymer hydrogels with anisotropies in structure, optical property, swelling/deswelling, and ion transport/fixation. Chem Commun (Camb). 2013;49(11):1082–1084.
  • Chen Y, Wang H, Yu J, et al. Mechanically strong and pH-responsive carboxymethyl chitosan/graphene oxide/polyacrylamide nanocomposite hydrogels with fast recoverability. J Biomater Sci Polym Ed. 2017;28(16):1899–1917.
  • Ter Schiphorst J, Van Den Broek M, De Koning T, et al. Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. J Mater Chem A. 2016;4(22):8676–8681.
  • Yang L, Wang Z, Fei G, et al. Polydopamine particles reinforced poly(vinyl alcohol) Hydrogel with NIR light triggered shape memory and self-healing capability. Macromol Rapid Commun. 2017;38(23):1700421.
  • Yang C, Liu Z, Chen C, et al. Reduced graphene oxide-containing smart hydrogels with excellent electro-response and mechanical properties for soft actuators. ACS Appl Mater Interfaces. 2017;9(18):15758–15767.
  • Cirillo G, Curcio M, Spizzirri UG, et al. Carbon nanotubes hybrid hydrogels for electrically tunable release of Curcumin. Eur Polym J. 2017;90:1–12.
  • Hu K, Sun J, Guo Z, et al. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. Adv Mater. 2015;27(15):2507–2514.
  • Wang P, Sun J, Lou Z, et al. Assembly-induced thermogenesis of gold nanoparticles in the presence of alternating magnetic field for controllable drug release of hydrogel. Adv Mater. 2016;28(48):10801–10808.
  • Ma Y, Zhang Y, Wu B, et al. Polyelectrolyte multilayer films for building energetic walking devices. Angew Chem. 2011;123(28):6378–6381.
  • Wei Q-B, Luo Y-L, Fu F, et al. Synthesis, characterization, and swelling kinetics of pH-responsive and temperature-responsive carboxymethyl chitosan/polyacrylamide hydrogels. J Appl Polym Sci. 2013;129(2):806–814.
  • Chen F, Lu S, Zhu L, et al. Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances. J Mater Chem B. 2019;7(10):1708–1715.
  • Ionov L. Hydrogel-based actuators: possibilities and limitations. Mater Today. 2014;17(10):494–503.
  • Patel KK, Gade S, Anjum MM, et al. Effect of penetration enhancers and amorphization on transdermal permeation flux of raloxifene-encapsulated solid lipid nanoparticles: an ex vivo study on human skin. Appl Nanosci. 2019;9(6):1383–1394.
  • Islam MR, Li X, Smyth K, et al. Polymer-based muscle expansion and contraction. Angew Chem Int Ed Engl. 2013;52(39):10330–10333.
  • Iamsaard S, Aßhoff SJ, Matt B, et al. Conversion of light into macroscopic helical motion. Nat Chem. 2014;6(3):229–234.
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.
  • Cui W, Zhang Z-J, Li H, et al. Robust dual physically cross-linked hydrogels with unique self-reinforcing behavior and improved dye adsorption capacity. RSC Adv. 2015;5(65):52966–52977.
  • Feng Z, Zuo H, Gao W, et al. A robust, self-healable, and shape memory supramolecular hydrogel by multiple hydrogen bonding interactions. Macromol Rapid Commun. 2018;39(20):1800138.
  • Di X, Kang Y, Li F, et al. Poly(N-isopropylacrylamide)/polydopamine/clay nanocomposite hydrogels with stretchability, conductivity, and dual light- and thermo-responsive bending and adhesive properties. Colloids Surf B Biointerfaces. 2019;177:149–159.
  • Chen Y, Kang S, Yu J, et al. Tough robust dual responsive nanocomposite hydrogel as controlled drug delivery carrier of asprin. J Mech Behav Biomed Mater. 2019;92:179–187.
  • Chen H, Chen Q, Hu R, et al. Mechanically strong hybrid double network hydrogels with antifouling properties. J Mater Chem B. 2015;3(27):5426–5435.
  • Gao G, Du G, Sun Y, et al. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl Mater Interfaces. 2015;7(8):5029–5037.
  • Shi K, Liu Z, Wei Y-Y, et al. Near-infrared light-responsive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility. ACS Appl Mater Interfaces. 2015;7(49):27289–27298.
  • Huang S, Shen J, Li N, et al. Dual pH‐ and temperature‐responsive hydrogels with extraordinary swelling/deswelling behavior and enhanced mechanical performances. J Appl Polym Sci. 2015;132(9):41530–41538.
  • Chen Y, Peng C, Lu Y, et al. Responsiveness and release characteristic of semi-IPN hydrogels consisting of nano-sized clay crosslinked poly(dimethylaminoethyl methacrylate) and linear carboxymethyl chitosan. J Nanosci Nanotechnol. 2015;15(1):164–171.
  • Chen Y, Song G, Yu J, et al. Mechanically strong dual responsive nanocomposite double network hydrogel for controlled drug release of asprin. J Mech Behav Biomed Mater. 2018;82:61–69.
  • He G, Chen X, Yin Y, et al. Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels. J Biomater Sci Polym Ed. 2016;27(4):370–384.
  • Gorgieva S, Kokol V. Preparation, characterization, and in vitro enzymatic degradation of chitosan-gelatine hydrogel scaffolds as potential biomaterials. J Biomed Mater Res A. 2012;100(7):1655–1667.
  • Zhang E, Wang T, Lian C, et al. Robust and thermo-response graphene–PNIPAm hybrid hydrogels reinforced by hectorite clay. Carbon. 2013;62:117–126.
  • Qin H, Zhang T, Li H-N, et al. Dynamic Au-thiolate interaction induced rapid self-healing nanocomposite hydrogels with remarkable mechanical behaviors. Chem. 2017;3(4):691–705.
  • Oh JH, Hong SY, Park H, et al. Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive. ACS Appl Mater Interfaces. 2018;10(8):7263–7270.
  • Chen Y, Qiao S, Yu J, et al. A novel dual responsive nanocomposite double network hydrogel with good mechanical property. IOP Conf Ser: Earth Environ Sci. 2018;186:012042.
  • Loebel C, D’Este M, Alini M, et al. Precise tailoring of tyramine-based hyaluronan hydrogel properties using DMTMM conjugation. Carbohydr Polym. 2015;115:325–333.
  • Lin C, Liu Y-T, Xie X-M. Improved mechanical properties of graphene oxide/poly (ethylene oxide) nanocomposites by dynamic interfacial interaction of coordination. Aust J Chem. 2014;67(1):121–126.
  • Ruan J, Wang X, Yu Z, et al. Enhanced physiochemical and mechanical performance of chitosan-grafted graphene oxide for superior osteoinductivity. Adv Funct Mater. 2016;26(7):1085–1097.
  • Park S, Lee K-S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano. 2008;2(3):572–578.
  • Justin R, Chen B. Characterisation and drug release performance of biodegradable chitosan-graphene oxide nanocomposites. Carbohydr Polym. 2014;103:70–80.
  • Han D, Yan L. Supramolecular hydrogel of chitosan in the presence of graphene oxide nanosheets as 2D cross-linkers. ACS Sustain Chem Eng. 2014;2(2):296–300.
  • Sun J-Y, Zhao X, Illeperuma WR, et al. Highly stretchable and tough hydrogels. Nature. 2012;489(7414):133–136.
  • Zhong M, Liu Y-T, Xie X-M. Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J Mater Chem B. 2015;3(19):4001–4008.
  • Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6(12):2583–2590.
  • Chen Q, Zhu L, Zhao C, et al. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater. 2013;25(30):4171–4176.
  • Hu Y, Du Z, Deng X, et al. Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules. 2016;49(15):5660–5668.
  • Chen Q, Zhu L, Huang L, et al. Fracture of the physically cross-linked first network in hybrid double network hydrogels. Macromolecules. 2014;47(6):2140–2148.
  • Lu X, Chan CY, Lee KI, et al. Super-tough and thermo-healable hydrogel - promising for shape-memory absorbent fiber. J Mater Chem B. 2014;2(43):7631–7638.
  • Chen Q, Chen H, Zhu L, et al. Engineering of tough double network hydrogels. Macromol Chem Phys. 2016;217(9):1022–1036.
  • Wei Q-B, Fu F, Zhang Y-Q, et al. Synthesis and characterization of pH-responsive carboxymethyl chitosan-g-polyacrylic acid hydrogels. J Polym Res. 2015;22(2):15.
  • Chen J, Sun J, Yang L, et al. Preparation and characterization of a novel IPN hydrogel memberane of poly (N-isopropylacrylamide)/carboxymethyl chitosan (PNIPAAM/CMCS). Radiat Phys Chem. 2007;76(8–9):1425–1429.
  • Li Z, Shen J, Ma H, et al. Preparation and characterization of pH- and temperature-responsive hydrogels with surface-functionalized graphene oxide as the crosslinker. Soft Matter. 2012;8(11):3139–3145.
  • Yao C, Liu Z, Yang C, et al. Smart hydrogels with inhomogeneous structures assembled using nanoclay-cross-linked hydrogel subunits as building blocks. ACS Appl Mater Interfaces. 2016;8(33):21721–21730.
  • Wu J, Wu Z, Han S, et al. Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel. ACS Appl Mater Interfaces. 2019;11(2):2364–2373.
  • Yao C, Liu Z, Yang C, et al. Poly (N‐isopropylacrylamide)‐clay nanocomposite hydrogels with responsive bending property as temperature‐controlled manipulators. Adv Funct Mater. 2015;25(20):2980–2991.
  • Ma C, Lu W, Yang X, et al. Bioinspired anisotropic hydrogel actuators with on–off switchable and color‐tunable fluorescence behaviors. Adv Funct Mater. 2018;28(7):1704568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.