514
Views
6
CrossRef citations to date
0
Altmetric
Articles

Hydrosoluble collagen based biodegradable hybrid hydrogel for biomedical scaffold

, , , , &
Pages 2199-2219 | Received 18 Apr 2020, Accepted 14 Jul 2020, Published online: 24 Jul 2020

References

  • Iltis AS. Organ transplantation. In: ten Have H, editor. Encyclopedia of global bioethics. Cham, Switzerland: Springer; 2016. p. 2073–2082.
  • Abolbashari M, Agcaoili SM, Lee MK, et al. Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomater. 2016;29:52–61.
  • Sharma P, Kumar P, Sharma R, et al. Tissue engineering; current status & futuristic scope. J Med Life. 2019;12(3):225–229.
  • Chen G, Ushida T, Tateishi T. Scaffold design for tissue engineering. Macromol Biosci. 2002;2(2):67–77.
  • Preethi Soundarya S, Haritha Menon A, Viji Chandran S, et al. Bone tissue engineering: scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol. 2018;119:1228–1239.
  • Vashist A, Ahmad S. Hydrogels in tissue engineering: scope and applications. Curr Pharm Biotechnol. 2015;16(7):606–620.
  • Schloss AC, Williams DM, Regan LJ. Protein-Based Hydrogels for Tissue Engineering. In: Cortajarena AL, Grove TZ, editors. Protein-based engineered nanostructures. Advances in experimental medicine and biology. Vol. 940. Chem, Switzerland: Springer; 2016. p. 167–177.
  • Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356(6337):eaaf3627.
  • El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract. 2013;2013(3):316–342.
  • Yuan T, Zhang L, Li K, et al. Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res Part B Appl Biomater. 2014;102(2):337–344.
  • Ferreira AM, Gentile P, Chiono V, et al. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–3200.
  • Dong SY, Lee Y, Ryu HA, et al. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomater. 2016;38:59–68.
  • Chang C, Zhang L. Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym. 2011;84(1):40–53.
  • Duan J, Liang X, Cao Y, et al. High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules. 2015;48(8):2706–2714.
  • Compaan AM, Christensen K, Yong H. Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater Sci Eng. 2017;3(8):1519–1526.
  • Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35(5):530–544.
  • Duan L, Yuan Q, Xiang H, et al. Fabrication and characterization of a novel collagen-catechol hydrogel. J Biomater Appl. 2018;32(7):862–870.
  • Guo BL, Peter XM. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem. 2014;57(4):490–500.
  • Janoušková O. Synthetic polymer scaffolds for soft tissue engineering. Physiol Res. 2018;67(Suppl 2):S335–S348.
  • Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8(5):607–626.
  • Koosehgol S, Ebrahimian-Hosseinabadi M, Alizadeh M, et al. Preparation and characterization of in situ chitosan/polyethylene glycol fumarate/thymol hydrogel as an effective wound dressing. Mater Sci Eng C Mater Biol Appl. 2017;79:66–75.
  • Kinard LA, K FK, Mikos AG. Synthesis of oligo(poly(ethylene glycol) fumarate) ). Nat Protoc. 2012;7(6):1219–1227.
  • Dragan ES. Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J. 2014;243(5):572–590.
  • Ming J, Zuo B. A novel silk fibroin/sodium alginate hybrid scaffolds. Polym Eng Sci. 2014;54(1):129–136.
  • Chen Z, Du T, Tang X, et al. Comparison of the properties of collagen-chitosan scaffolds after γ-ray irradiation and carbodiimide cross-linking . J Biomater Sci Polym Ed. 2016;27(10):937–953.
  • Ninan N, Forget A, Shastri VP, et al. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl Mater Interfaces. 2016;8(42):28511–28521.
  • Jo S, Shin H, Shung AK, et al. Synthesis and characterization of oligo (poly (ethylene glycol) fumarate) macromer. Macromolecules. 2001;34(9):2839–2844.
  • Doulabi ASH, Mirzadeh H, Imani M, et al. Synthesis and preparation of biodegradable and visible light crosslinkable unsaturated fumarate-based networks for biomedical applications. Polym Adv Technol. 2008;19(9):1199–1208.
  • Chen JX, Yuan J, Wu YL, et al. Fabrication of tough poly(ethylene glycol)/collagen double network hydrogels for tissue engineering . J Biomed Mater Res A. 2018;106(1):192–200.
  • Schroepfer M, Meyer M. DSC investigation of bovine hide collagen at varying degrees of crosslinking and humidities. Int J Biol Macromol. 2017;103:120–128.
  • Zhang Q, Lv S, Lu J, et al. Characterization of polycaprolactone/collagen fibrous scaffolds by electrospinning and their bioactivity. Int J Biol Macromol. 2015;76:94–101.
  • Ding C, Zhang M, Li G. Rheological properties of collagen/hydroxypropyl methylcellulose (COL/HPMC) blended solutions. J Appl Polym Sci. 2014;131(7):40042.
  • Bai L, Zhao X, Bao RY, et al. Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA. J Mater Sci. 2018;53(14):10543–10511.
  • Corradini P, Auriemma F, De Rosa C. Crystals and crystallinity in polymeric materials. Acc Chem Res. 2006;39(5):314–323.
  • Dadsetan M, Szatkowski JP, Yaszemski MJ, et al. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering . Biomacromolecules. 2007;8(5):1702–1709.
  • Ying H, Zhou J, Wang M, et al. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater Sci Eng C Mater Biol Appl. 2019;101:487–498.
  • Amuasi HE, Fischer A, Zippelius A, et al. Linear rheology of reversibly cross-linked biopolymer networks. J Chem Phys. 2018;149(8):084902
  • Oswald W, Willenbacher N. Controlling the elongational flow behavior of complex shear-thinning fluids without affecting shear viscosity. Rheol Acta. 2019;58(10):687–698.
  • Appel EA, Loh XJ, Jones ST, et al. Sustained release of proteins from high water content supramolecular polymer hydrogels. Biomaterials. 2012;33(18):4646–4652.
  • Tao Y, Zhang R, Xu W, et al. Rheological behavior and microstructure of release-controlled hydrogels based on xanthan gum crosslinked with sodium trimetaphosphate. Food Hydrocoll. 2016;52:923–933.
  • Jianhua W, Xiaomin S, Zhihua Z, et al. Silk fibroin/collagen/hyaluronic acid scaffold incorporating pilose antler polypeptides microspheres for cartilage tissue engineering. Mater Sci Eng C. 2019;94:35–44.
  • Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev. 2010;16(4):371–383.
  • Kudo S, Ogawa H, Yamakita E, et al. Adsorption of water to collagen as studied using infrared (IR) microspectroscopy combined with relative humidity control system and quartz crystal microbalance. Appl Spectrosc. 2017;71(7):1621–1632.
  • Bag MA, Valenzuela LM. Impact of the hydration states of polymers on their hemocompatibility for medical applications: a review. IJMS. 2017;18(8):1422.
  • Lee YP, Liu HY, Lin PC, et al. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery. Colloids Surf B Biointerfaces. 2019;175:26–35.
  • Sornkamnerd S, Okajima MK, Kaneko T. Tough and porous hydrogels prepared by simple lyophilization of LC gels. ACS Omega. 2017;2(8):5304–5314.
  • You F, Wu X, Zhu N, et al. 3D printing of porous cell-laden hydrogel constructs for potential applications in cartilage tissue engineering. ACS Biomater Sci Eng. 2016;2(7):1200–1210.
  • Sargeant TD, Desai AP, Banerjee S, et al. An in situ forming collagen-PEG hydrogel for tissue regeneration. Acta Biomater. 2012;8(1):124–132.
  • Ninan N, Muthiah M, Park IK, et al. Faujasites incorporated tissue engineering scaffolds for wound healing: in vitro and in vivo analysis. ACS Appl Mater Interfaces. 2013;5(21):11194–11206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.